
Online Interactive 4D Character Animation

Marco Volino∗ Peng Huang † Adrian Hilton ‡

Centre for Vision, Speech & Signal Processing,
University of Surrey, UK

Figure 1: 4D interactive character from reconstructed geometry points to textured mesh delivered via a WebGL-enabled browser.

Abstract

This paper presents a framework for creating realistic virtual char-
acters that can be delivered via the Internet and interactively con-
trolled in a WebGL enabled web-browser. Four-dimensional per-
formance capture is used to capture realistic human motion and ap-
pearance. The captured data is processed into efficient and com-
pact representations for geometry and texture. Motions are anal-
ysed against a high-level, user-defined motion graph and suitable
inter- and intra-motion transitions are identified. This processed
data is stored on a webserver and downloaded by a client applica-
tion when required. A Javascript-based character animation engine
is used to manage the state of the character which responds to user
input and sends required frames to a WebGL-based renderer for
display. Through the efficient geometry, texture and motion graph
representations, a game character capable of performing a range of
motions can be represented in 40-50 MB of data. This highlights
the potential use of four-dimensional performance capture for cre-
ating web-based content. Datasets are made available for further
research and an online demo is provided 1.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation I.3.8 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Applications;

Keywords: WebGL, Performance Capture, Motion Graphs, Char-
acter Animation, 4D Video

∗e-mail:m.volino@surrey.ac.uk
†e-mail:peng.huang@surrey.ac.uk
‡e-mail:a.hilton@surrey.ac.uk
1Website: http://cvssp.org/projects/4d/web3D/

1 Introduction

Four-dimensional performance capture (4DPC) enables the acqui-
sition of digital assets that can be used in broadcast, film and game
production. This technology has many advantages over traditional
animation pipelines as it allows the simultaneous capture of natural
motion and appearance without hundreds of man hours currently
required by skilled artists. State-of-the-art computer vision algo-
rithms make it possible to acquire three-dimensional (3D) geom-
etry with millimetre scale accuracy [Furukawa and Ponce 2010].
Combining these algorithms with recent advances in geometry pro-
cessing allow a temporally consistent mesh representation to be ex-
tracted from a set of independently reconstructed meshes. This re-
sults in a compact representation for time-varying geometry [Budd
et al. 2012b]. It has also been demonstrated that this temporally
consistent representation is efficient for character animation pur-
poses [Casas et al. 2013].

In this paper, a framework is presented which allows the creation
of realistic characters that can be interactively controlled in a web
browser (Figure 1). Data is captured and processed offline resulting
in compact representations of geometry and dynamic appearance.
This data is stored on a server, downloaded by the client application
and rendered locally using WebGL. A parametric motion graph-
based character animation engine is used to provide high-level con-
trol of the character demonstrating that 4D Video data can be used
in the production of web-based games. In this work, 4D Video is
defined as a temporally consistent geometry representation com-
bined with the camera images capturing the dynamic appearance
and geometry of the human performance.

WebGL is a cross-platform, Javascript-based API for rendering 3D
graphics natively in a web-browser (e.g. Google Chrome, Mozilla
Firefox). It is also becoming increasingly supported by mobile de-
vices (e.g. smart phones and tablets). These properties make We-
bGL an ideal platform for the delivery of interactive 4D video con-
tent and open this technology up to the widest possible audience.

http://cvssp.org/projects/4d/web3D/

Offline data capture and processing Data storage
on server Client Application

Capture

Shape
Reconstruction

Temporal
Alignment

Texture
Extraction

Motion Graph
Construction

Template Mesh

Texture Maps

Motion Graph
Data

Aligned Meshes

Data
transfer

Transferred Data

Character
Animation

Engine

User
Interaction

WebGL
Renderer

Figure 2: The system consists of three main stages: offline data processing (section 3.1) resulting in geometry, texture map and motion graph
data. This data is stored on a server and transfered to a client application (section 3.2).

2 Background

In the last decade, Surface Performance Capture (SurfCap) has been
developed to capture geometry, dynamic appearance and motion
of the human body from a multi-camera setup [Starck and Hilton
2007]. Different from Motion Capture (MoCap) techniques which
capture skeletal motion and re-target to virtual characters convey-
ing a sense of realistic motion for authoring animation in games
and film. Performance Capture [de Aguiar et al. 2008; Vlasic et al.
2008; Starck and Hilton 2007; Theobalt et al. 2007] aims to repro-
duce the fine details of human performance (e.g. wrinkles in cloth-
ing and the motion of hair) and reproduce both realistic motion and
appearance. The result of Performance Capture is a sequence of
3D meshes and captured camera images. These 3D meshes may
not have temporally consistent vertices and topology, making them
difficult to store, transfer and re-animate. Recent works on 3D
mesh sequence alignment/tracking [Budd et al. 2012b; Allain et al.
2014] enable production of temporally consistent 4D sequences,
i.e. a single template mesh deforming over time. Texture gener-
ation/extraction from original captured multi-view videos [Volino
et al. 2014] allows view-dependent or optimal-views blended tex-
ture per frame. 4D videos enable efficient data storage and trans-
mission over the Internet which is also the basis for reanimation of
the mesh sequences.

Motion Graph techniques [Kovar et al. 2002; Lee et al. 2002;
Arikan and Forsyth 2002] are widely used to synthesise new skele-
tal movement from a database of skeletal MoCap examples. A
graph structure is used to represent possible transitions between dif-
ferent motions while the traversal of the graph results in a concate-
native animation. The production of character animation from 4D
videos is an analog to conventional MoCap based character anima-
tion. Surface Motion Graphs (SMG) [Huang and Hilton 2009] first
introduced a framework for concatenative human motion synthesis
using unaligned 3D mesh sequences. Transitions are identified be-
tween 3D mesh sequences as most similar frames in terms of both
3D shape and motion similarity. Recent work extends to Hybrid
Skeletal-Surface Motion Graphs [Huang et al. 2015] considering
both 3D shape and appearance similarity and using 4D video as
input. Seamless transitions can be created by linear blending 3D
meshes of overlapped frames at identified transitions. This work
also provide a means to drive a 4D video-based animation with
readily available skeletal MoCap data which extends the range of
motion that can be produced. 4D Parametric Motion Graphs [Casas
et al. 2013] also use 4D video as input. This enables parameter-
ization of motions. A parametric motion is defined as a pair of

motions with a semantic motion parameter to control the synthesis
of new intermediate motion. For instance, with a pair of walk and
jog and a speed parameter, a user can create a new motion with any
speed between walk and jog. Parametric Motion Graphs also allow
responsive transition between parametric motions. Transitions are
identified on the fly to balance the responsive time and smoothness.
4D video textures [Casas et al. 2014] provide a run-time optical
flow based texture warping to seamlessly blend textures at transi-
tions. However, the computational cost is high for run-time transi-
tion identification and optical flow-based texture warping. Due to
the WebGL implementation limits, this paper uses fixed transitions
between motions for animation control.

Previously, WebGL has been used to deliver free-viewpoint video
of sport events [Budd et al. 2012a]. Multiple camera sequences
were captured and geometry was reconstructed offline. The time-
varying geometry was transferred via HTTP along with the cam-
era images of the captured frames. WebGL was then used to pro-
jectively texture the geometry based upon the user selected view-
point. This framework was limited to the replay of reconstructed
data. In contrast, this work applies further offline processing steps
to create temporally consistent geometry, texture maps and a mo-
tion graph with fixed transition points. This pre-processing also
removes the need for online depth testing which requires additional
texture buffers and off-screen rendering. The representation allows
implementation of an interactive WebGL character animation en-
gine using 4D video.

3 Character Animation Pipeline

The system consists of three main stages; offline data capture and
processing; data storage on a server and transfer; and the client
application. Each stage is described below and an overview of the
system is shown in Figure 2.

3.1 Offline Data Capture and Processing

The capture process is conducted in a dedicated studio using multi-
ple synchronised cameras, see Figure 3a for capture frames. Silhou-
ettes are extracted via chroma keying and are used to reconstruct a
visual hull for every frame [Laurentini 1994]. Each visual hull is
then refined by matching stereo features across camera images to
make the geometry photo-consistent. Stereo refinement adds geo-
metric detail to concave regions of the surface which cannot be re-
covered using visual hull reconstruction [Starck and Hilton 2007].

(a) Multi-Camera Frame (b) Texture Map (c) Textured sequence from an arbitrary viewpoint

Figure 3: (a) A multi-view frame from character Dan walk sequence, frame 5. Note this frame has been cropped based on the extracted
silhouette. (b) An extracted texture map for Dan walk sequence, frame 14. (c) Example of texture sequence Dan high jump.

This results in a set of independently reconstructed meshes which
have no correspondence to one another. A temporally consistent
mesh representation can be extracted from this collection of un-
structured meshes using a non-rigid, global alignment framework
based on pairwise matching and Laplician deformation [Budd et al.
2012b].

3.1.1 4D Motion Graph Construction

A 4D Motion Graph with 4D video as input is constructed in order
to represent possible inter- and intra-sequence transitions. Analo-
gous to motion graph [Kovar et al. 2002] for skeletal MoCap data,
allows captured motion sequences being seamlessly concatenated
to produce new motion.

To identify potential transitions, we first measure frame-to-frame
similarity across all sequences. Both geometry and appearance
similarity are considered. A 6D Shape-Colour Histogram is ex-
tracted for each mesh which partitions the space into disjoint cells
and counts the number of occupied volume elements falling into
each bin together with their RGB colour distribution to construct a
6D histogram as a signature [Huang et al. 2015].

A similarity measure c(Mr,Ms) is defined between two meshes
Mr and Ms by minimizing the difference between their corre-
sponding bins with respect to rotation about the vertical axis,

c(Mr,Ms) = min
φ
‖H(Mr, 0)−H(Ms, φ)‖. (1)

where H(Mr, 0) and H(Ms, φ) denote extracted 6D shape-colour
histogram for Mr and Ms respectively. The Earth Mover’s Dis-
tance (EMD) [Rubner et al. 1998] is used to compute the distance
between the sparse 6D shape-colour histograms and Equation 1 is
minimized in a computationally efficient way: a fine histogram is
generated initially at an order of magnitude higher resolution than
the desired vertical bin size; the fine histogram is then shifted by the
fine bin size and re-binned to a coarse histogram for comparison.

Given a pair of motion sequences (transfer from and transfer to), a
transition is determined by a tuple (m,n, L),m and n for identified
location in motion sequences and L for overlap length. The optimal
can be found as minimising:

(mopt, nopt, Lopt) = arg min
m,n,L

L∑
k=−L

α′(k) · cm+k,n+k. (2)

where α′(k) = min(1 − k+L
2L

, k+L
2L

) denotes the weighting for
linear blending at transitions. This optimisation is performed as an

adaptive temporal filtering with window size 2L+1 and weighting
α′(k) on the precomputed similarity matrix C.

Parametric motion is supported within 4D Motion Graphs [Casas
et al. 2013]. A parametric motion node contains two or more mo-
tion sequences (e.g. a walk and a jog) parameterised to allow gen-
eration of any motion in between (e.g. the speed between a walk
and a jog). Due to computational cost, the transition between para-
metric motions is precomputed rather than on the fly as in previous
work [Casas et al. 2014]. Fixed transitions are precomputed using
the same method as previously described and when motion transfer-
ring is required, the motion parameter will first adjust to reach those
transitions and then transfer via them. Although multiple transitions
are possible, due to computational and data transferring cost for a
WebGL application, only the best transition between each pair of
motion sequences is kept. The Surface Motion Graph is stored as
an XML file for future use. An example of a Surface Motion Graph
is shown in Figure 4.

3.1.2 Texture Extraction

The texture map at frame t is generated using the following pro-
cess and can be implemented in OpenGL Shading Language.

Input: Template Mesh MT , Mesh Mt at frame t, Camera Pro-
jection Matrix πit, Normalised camera direction vector cdi , Camera
Images {Iit}nC

i=0, Rendered Depth Maps {Di
t}nC
i=0,

Process: Each output pixel is associated with a real or interpolated
vertex v consisting of a 3D position vp, normal vn and texture coor-
dinate vu. The following process is performed on each output pixel
of the texture map:

1. Perform a depth test in all capture cameras by projecting vp
into {Di

t}nC
i=0 using πit.

2. Sort all visible cameras based on the angle between cdi and vn
in ascending order, e.g. cameras with a more direct view are
preferred.

3. For the best N visible cameras, sample colour by projecting
vp into {Iit}nC

i=0 using πit and use a weighted average of all N
colours based on the previously calculated angles.

Output: Texture map Tt for frame t

A template mesh MT is selected and texture coordinates U are cre-
ated, which define a mapping from the 3D surface to the 2D tex-
ture domain. Current solutions to generate U for an arbitrary shape

Stand

Walk-to-Stand

Stand-to-Walk

Motion Node

Parametric Motion Node

Transitional Motion Node

Horizontal
Jump

Short-to-Long

Vertical Jump
Low-to-High

Walk/Run

Figure 4: Motion graph example showing how different motion nodes are connected.

are performed either automatically by positioning cuts on the sur-
face based on curvature [Lévy et al. 2002] or require cuts to be
manually defined as in model pelting [Piponi and Borshukov 2000]
prior to the surface being flattened. In this work, U is generated
by manually defining seams to split the mesh up into semantically
meaningful parts (e.g. arms, legs, face, etc) using Blender (version
2.62). This operation is performed once for a character database as
all meshes share the same vertex count and mesh topology.

Texture extraction is performed on every frame and maintains the
temporal, dynamic appearance of the surface such as wrinkles in
clothing and facial expression which are not modeled geometri-
cally. Figure 3b shows an example of an extracted texture map.
Figure 3c shows examples of textured model sequences.

3.2 Client Application

The application is implemented in Javascript and consists of two
main components; a character animation engine (CAE) and a
WebGL-based renderer. The client application starts by download-
ing all the required mesh, texture and motion graph data. The CAE
maintains the current state of the character based on the user input.
The frame, or pair of frames in the case of a parametric motion,
which are required to be displayed are sent to the WebGL renderer.

3.2.1 Character Animation Engine

The CAE is implemented based on the previously constructed Para-
metric Motion Graph and allows user interactive control over mo-
tion transfer and motion parameter adjustment. Figure 5 illustrates
the flow chart of the CAE: Motion Graph and Motion Database are
first loaded from xml files. User interactive control will result in
a queue of motion requests. The CAE calls a traverse function to
walk through the Motion Graph and each step will point to data in
the Motion Database. Depending on whether the frame needs to
be blended, single or multiple pairs of mesh and texture data are
passed to the WebGL renderer. Playing will finish when no more
motion requests are in the queue. But if the current motion is a
loop motion, it will continue playing (e.g. a walk cycle). While the
animation is playing, the user can adjust motion parameters for the
current parametric motion (e.g. when the virtual character is per-
forming a “walk/jog” motion), the user can speed up or slow down
and this will immediately change the motion.

3.2.2 WebGL Renderer

The resources of the client device are not known prior to render-
ing. To ensure that the application can run on devices with different
capabilities, only the minimum amount of graphics resources are
allocated (e.g. data buffers and textures) . Mesh and texture data
is stored in client memory and the WebGL buffers are updated as
required. The temporally consistent geometry representation allow
for only the vertex position and texture map buffers to be updated
on a frame-to-frame basis, as the mesh connectivity and texture
coordinates remain constant over all frames. Basic shadowing is
achieved by positioning a virtual light source in the scene and ren-
dering a depth map from the light source viewpoint. WebGL cur-
rently does not support access to the depth buffer so depth values
are packed/unpacked into a 24bit representation. When rendering
the floor plane each vertex is projected into the depth buffer. If a
vertex falls into a region occluded by the characters depth map a
shadow effects is applied. This is performed over a 3x3 window to
enable soft edges to shadows.

Motion Database

Empty
?

Loop
?

Blend
?

Mesh
Texture

….

Mesh 0
Texture 0
Mesh 1

Texture 1
….

User
Input

Motion in Queue

End
Playback

Motion Graph

YesNo

No

Yes

No

Yes Next
Frame

Motion
Parameters

Traverse
Function()

Current
Status

Figure 5: Flow chart of character animation engine showing how
motion parameters are used to query the motion graph and motion
database based on user input.

Dataset Captured Data Frames Processed Data (MB) Polygon Runtime
(MB) (Motions) Geometry Texture Total Count RAM(MB) Load Time(s)+ FPS Range

Dan 6800 254 (8) 12 27 39 5330 220 30-60 30-70
Roxanne 9500 432 (10) 20 31 51 4950 350 30-60 30-70
Ballet 60300 3301 (9) 304 1∗ 305 9996 1700 >120 30-70

Table 1: Overview of datasets and storage requirements of captured and reconstructed data. ∗Due to the number of frames a single texture
map was applied to all frames. +Loading times are dependent of internet connection speed.

4 Results

In order to test the framework, three characters were processed and
rendered using the WebGL animation engine. An overview of each
character scenario is given below.

Character Dan
A male character in a red and black sweater, dark jeans and brown
shoes was captured performing typical game character motions, e.g.
idle, walk, run, horizontal and vertical jumps [Casas et al. 2014]. In
this demonstration, the user can interactively control the viewpoint,
the state of the character using HTML buttons, and motion param-
eters when in a parametric motion node (e.g the speed of walk/run,
the height of vertical jumps and the length of horizontal jumps).
This character requires 30 MB of mesh and texture data. It is made
up of eight motions with a total of 254 frames. Once loaded re-
quires 220 MB of RAM. Examples of this character are shown in
Figure 7.

Character Roxanne
A female character in a green top, camouflage shorts and brown
boots was captured preforming typical game character motions in-
cluding walk, run, tense, hit and stagger. This data is part of the Sur-
fCap dataset [Starck and Hilton 2007]. In this demonstration, the
user can interactively control the viewpoint, the state of the charac-
ter, and motion parameters. The complete character consists of 10
motions, requires 50 MB of data to be transfered, and once loaded
requires 370 MB of RAM. Examples of this character are shown in
Figure 8.

Ballet Character
A female ballet dancer dressed in a black leotard was captured
performing nine short (5-10 second) dance segments, starting and
ending in a neutral pose. In this example, high resolution geom-
etry of the character’s face was captured and reconstructed sepa-
rately [Blumenthal-Barby and Eisert 2014]. This high resolution
face model was then fused to a lower resolution body template and
temporal alignment performed [Allain et al. 2014]. In this demon-
stration, the user can reorder the small dance segments to create
a unique dance. Example frames are shown in Figure 9. This is
the largest demonstration consisting of 3300 frames, requiring 305
MB of data to be transfered and using 1.7 GB of RAM. To make
this demonstration practical, a single texture map was selected and
applied to all frames.

All test were conducted on a Dell Optiplex 9010 desktop computer
with an nVidia GT 640 graphics card running Ubuntu 12.04 on
Mozilla Firefox (version 35.0) and Google Chrome (version 40.0).
The rendering frame rate ranged from 30 to 70 frames per second
(FPS). It was observed that Mozilla Firefox consistently achieved
a higher FPS than Google Chrome in all demonstrations. Loading
time is dependent on the Internet connection speed with the Dan
and Roxanne characters requiring between 30 seconds to 1 minute.
The Ballet example however took several minutes to load and in its
current form would probably be unsuitable for general use. Rec-
ommendations to address problems with the data size are made in
section 5. Examples of the user interface are shown in Figure 6.

Figure 6: Example of user interface for Roxanne character (top)
and Ballet character (bottom)

5 Conclusions

This paper has presented a framework for creating 4D characters
and allowing interactive animation to be performed in a WebGL en-
abled web browser. This was achieved through the development of
a Javascript-based character animation engine and a WebGL render-
ing engine. A key challenge of this work is efficient representation
of geometric data which is achieved using a temporally consistent
geometry representation and by combining the multiple-camera im-
ages into a texture map. Three demonstrations based on this frame-
work were presented with each character expressing a different set
of motions. The motion of a typical game character can be repre-
sented in a few hundred frames which equates to between 40-50MB
of data.

Future work will investigate further reductions in data size with an
emphasis on maintaining visual quality and how to efficiently trans-
fer data. This could include; Geometry compression algorithms;
Improvement of texture maps through a super-resolution approach
[Goldluecke and Cremers 2009; Tsiminaki et al. 2014]; Compres-
sion of dynamic texture maps to maintain realism.

Acknowledgments

This research was supported by the EU FP7 Project RE@CT (grant
agreement no 288369) and EPSRC/BBC industrial case studentship
award ’3D Video Editing’. The temporally consistent geometry of
the Ballet character, featuring a high resolution face fused with a
lower resolution body, was provided by RE@CT project partners.

http://react-project.eu/

Figure 7: Dan Character Example. The current motion of the character is controlled using HTML buttons below the viewer. Parametric
nodes are controlled using assigned keys and the viewpoint is selected using either the mouse or keyboard controls.

Figure 8: Roxanne Character Example: The character and viewpoint can be interactively controlled by the user. Parametric nodes (e.g.
speed of walk/run) are controlled using the keyboard. This example consists of six motions including stand, walk, run, stagger, tense and hit.

Figure 9: Ballet Example: Users can create a unique dance sequence by concatenating dance moves together.

References

ALLAIN, B., FRANCO, J.-S., BOYER, E., AND TUNG, T. 2014.
On Mean Pose and Variability of 3D Deformable Models.
In ECCV 2014 - European Conference on Computer Vision,
Springer, Zurich, Switzerland.

ARIKAN, O., AND FORSYTH, D. 2002. Interactive motion gen-
eration from examples. ACM Transactions on Graphics 21, 3
(July), 483–490.

BLUMENTHAL-BARBY, D. C., AND EISERT, P. 2014. High-
resolution depth for binocular image-based modeling. Comput-
ers and Graphics 39.

BUDD, C., GRAU, O., AND SCHÜBEL, P. 2012. Web delivery of
free-viewpoint video of sport events.

BUDD, C., HUANG, P., KLAUDINY, M., AND HILTON, A. 2012.
Global Non-rigid Alignment of Surface Sequences. Interna-
tional Journal of Computer Vision 102, 1-3 (Aug.), 256–270.

CASAS, D., TEJERA, M., GUILLEMAUT, J., AND HILTON, A.
2013. Interactive animation of 4d performance capture. Visu-
alization and Computer Graphics, IEEE Transactions on 19, 5,
762–773.

CASAS, D., VOLINO, M., COLLOMOSSE, J., AND HILTON, A.
2014. 4d video textures for interactive character appearance.
Computer Graphics Forum (Proc. Eurographics 2014) 33, 2.

DE AGUIAR, E., STOLL, C., AND THEOBALT, C. 2008. Perfor-
mance capture from sparse multi-view video. ACM Transactions
on . . . , 1–10.

FURUKAWA, Y., AND PONCE, J. 2010. Accurate, dense, and ro-
bust multiview stereopsis. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on 32, 8 (Aug), 1362–1376.

GOLDLUECKE, B., AND CREMERS, D. 2009. Superresolution tex-
ture maps for multiview reconstruction. IEEE 12th International
Conference on Computer Vision (Sept.), 1677–1684.

HUANG, P., AND HILTON, A. 2009. Surface motion graphs for
character animation from 3d video. In SIGGRAPH 2009: Talks,
ACM, New York, NY, USA, SIGGRAPH ’09, 56:1–56:1.

HUANG, P., TEJERA, M., COLLOMOSSE, J., AND HILTON, A.
2015. Hybrid skeletal-surface motion graphs for character ani-
mation from 4d performance capture. ACM Trans. Graph. 34, 2
(Mar.), 17:1–17:14.

KOVAR, L., GLEICHER, M., AND PIGHIN, F. 2002. Motion
graphs. In Proceedings of the 29th Annual Conference on Com-
puter Graphics and Interactive Techniques, ACM, New York,
NY, USA, SIGGRAPH ’02, 473–482.

LAURENTINI, A. 1994. The visual hull concept for silhouette-
based image understanding. Pattern Analysis and Machine In-
telligence, IEEE

LEE, J., CHAI, J., REITSMA, P. S. A., HODGINS, J. K., AND
POLLARD, N. S. 2002. Interactive control of avatars animated
with human motion data. ACM Transactions on Graphics 21, 3,
491–500.

LÉVY, B., PETITJEAN, S., RAY, N., AND MAILLOT, J. 2002.
Least squares conformal maps for automatic texture atlas gener-
ation. ACM Transactions on Graphics (. . . , 362–371.

PIPONI, D., AND BORSHUKOV, G. 2000. Seamless texture map-
ping of subdivision surfaces by model pelting and texture blend-
ing. In Proceedings of the 27th annual conference on Computer

graphics and interactive techniques - SIGGRAPH ’00, ACM
Press, New York, New York, USA, 471–478.

RUBNER, Y., TOMASI, C., AND GUIBAS, L. J. 1998. A Metric for
Distributions with Applications to Image Databases. Computer
Vision, 1998. Sixth International Conference on, 59–66.

STARCK, J., AND HILTON, A. 2007. Surface capture for
performance-based animation. Computer Graphics and Appli-
cations, IEEE 27, 3 (May), 21–31.

THEOBALT, C., AHMED, N., LENSCH, H., MAGNOR, M., AND
SEIDEL, H.-P. 2007. Seeing people in different light–joint
shape, motion, and reflectance capture. IEEE transactions on
visualization and computer graphics 13, 4, 663–674.

TSIMINAKI, V., FRANCO, J., AND BOYER, E. 2014. High Res-
olution 3D Shape Texture from Multiple Videos. International
Conference on

VLASIC, D., BARAN, I., MATUSIK, W., AND POPOVIĆ, J. 2008.
Articulated mesh animation from multi-view silhouettes. ACM
Transactions on Graphics 27, 3 (Aug.), 1.

VOLINO, M., CASAS, D., COLLOMOSSE, J., AND HILTON, A.
2014. Optimal representation of multiple view video. In British
Machine Vision Conference.

