
Multi-person 3D Pose Estimation and Tracking in Sports

Lewis Bridgeman
l.bridgeman@surrey.ac.uk

Marco Volino
marco.volino@surrey.ac.uk

Jean-Yves Guillemaut
j.guillemaut@surrey.ac.uk

Adrian Hilton
CVSSP

University of Surrey
a.hilton@surrey.ac.uk

Abstract
We present an approach to multi-person 3D pose esti-

mation and tracking from multi-view video. Following in-
dependent 2D pose detection in each view, we: (1) correct
errors in the output of the pose detector; (2) apply a fast
greedy algorithm for associating 2D pose detections be-
tween camera views; and (3) use the associated poses to
generate and track 3D skeletons. Previous methods for es-
timating skeletons of multiple people suffer long processing
times or rely on appearance cues, reducing their applica-
bility to sports. Our approach to associating poses between
views works by seeking the best correspondences first in a
greedy fashion, while reasoning about the cyclic nature of
correspondences to constrain the search. The associated
poses can be used to generate 3D skeletons, which we pro-
duce via robust triangulation. Our method can track 3D
skeletons in the presence of missing detections, substantial
occlusions, and large calibration error. We believe ours is
the first method for full-body 3D pose estimation and track-
ing of multiple players in highly dynamic sports scenes.
The proposed method achieves a significant improvement
in speed over state-of-the-art methods.

1. Introduction
The problem of estimating 3D pose from video is a well-

explored one. There has been significant research activity
into calculating 3D pose from both monocular [4, 8, 23, 33]
and multi-view video [6, 13, 20, 30], yet few existing meth-
ods have been crafted for the sports domain. Sports datasets
are especially challenging for computer vision algorithms
due to: player contact and fast motion; similar player ap-
pearance; heavy occlusion; moving, low resolution and very
wide-baseline cameras; and poor calibration. However, the
potential applications of estimating the 3D pose of play-
ers in sports are wide-reaching. These include performance
analysis, motion capture, and novel applications in broad-
cast and immersive media.
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Figure 1: Results of our proposed method. The first two
rows show our results overlaid on the input images, and the
bottom row shows the results from a new camera view.

Estimating the 2D poses of multiple people in images
is a well-understood problem [10, 18]. The task of com-
bining multi-person 2D detections from multiple views to
generate 3D skeletons has also been explored [6, 12, 20].
However, none of these methods are especially applicable to
sports due to lengthy processing times, reliance on appear-
ance models, or sensitivity to calibration error and noisy
pose detections. In this paper we propose a greedy algo-
rithm to find correspondences between 2D poses in multiple
views, employing them to generate 3D skeletons. By main-
taining the connectivity of 2D poses, the resulting method
provides a significant improvement in speed versus recent
methods. We introduce techniques to correct the errors as-
sociated with multi-person pose detectors; split poses, fused
poses and swapped joints. Finally, we introduce an algo-
rithm to track our generated 3D skeletons, and hence their



2D counterparts, throughout a sequence. Our algorithm has
been shown to work on a variety of sports datasets with poor
calibration, erroneous pose detections, and substantial oc-
clusion. Example results can be seen in Figure 1.

Our contributions include:
• A method for identifying and correcting errors in a

multi-person pose detector output by employing multi-
view information.
• A fast greedy algorithm for identifying correspon-

dences between 2D poses in multi-view video.
• A method for tracking 3D skeletons in sequences with

missing and noisy joint estimations.

2. Related Work
The literature on estimating 2D human pose from

monocular images can be categorized into single-person
[15, 34, 37] and multi-person [10, 18, 21, 28] methods.
Before the uptake in convolutional neural network (CNN)
methods, the state-of-the-art employed generative models.
Pictorial structures model a pose as a collection of con-
nected parts, with priors constraining the relative positions
or angles of each part. The parts are aligned to image data
in an energy minimization. Pictorial structures were origi-
nally applied to monocular 2D pose estimation [15, 27], but
have also been extended to multi-view 3D pose estimation
[1, 9].

CNNs have successfully been applied to pose estimation
[29, 34, 37]. In [34], a regressor is trained to directly return
the joint coordinates. An end-to-end architecture that learns
spatial models for pose estimation was presented in [37].

CNN-based pose estimators result in a significant in-
crease in accuracy, and provide a basis for more difficult
pose estimation tasks such as multi-person 2D pose estima-
tion [10, 18, 28]. In [10], a method is introduced to esti-
mate poses of multiple people in real-time by fusing joint
confidence maps, and a learned vector field that defines the
relationship between joints. Monocular 3D pose estimation
has been approached using pictorial structures [4], fitting
3D skeletons to 2D joints [11, 23], and using convolutional
architectures [33]. The methods in [26, 31] extend convo-
lutional pose estimation to video, using the temporal infor-
mation to overcome the challenges of estimating pose from
a single frame.

Markerless motion capture tracks the motion of the hu-
man skeleton in 3D without using traditional optical mark-
ers and specialized cameras. This is essential in sports
capture, where players cannot be burdened with additional
performance capture attire. There has been extensive re-
search into markerless motion capture of a single subject
[5, 22, 30, 32]. The method in [36] fuses 2D pose detec-
tions and data from inertial measurement units (IMUs) to
recover 3D pose for multiple people. In [22] IMUs and 2D
pose are combined to capture the 3D pose of a single per-

son in real-time. The pictorial structure model is extended
in [9] for use in estimating the 3D pose of a single per-
son from multiple views. An early model-based tracking
method is presented in [25], which uses multi-view silhou-
ettes and color information to track up to two people in a
studio environment. This method is effective, but requires
manual initialization of the geometry of each actor. The
method in [32] introduces a sum of Gaussians appearance
model for near video-rate motion capture of a single sub-
ject, but also requires initialization.

Multi-person markerless motion capture methods are re-
quired in order to capture team sports. Markerless motion
capture of multiple people in multi-view video has been in-
vestigated in [5, 6, 13, 14, 20]. The approaches in [14, 20]
take 2D pose detections from multiple views and use vol-
umetric voting to find all 3D joint locations. The method
in [14] clusters the 3D joints, and a 3D Pictorial Struc-
ture (3DPS) model is used to generate 3D poses for each
cluster. In [20], the 3D joints are grouped into body parts,
which are then grouped into full skeletons; the trajectory
of each skeleton is also tracked. Volumetric voting is an
effective way of estimating the 3D joints of multiple peo-
ple, provided there are enough cameras and the scene is not
crowded. However, it would be expensive if applied to a
large capture area such as a soccer stadium. Additionally,
volumetric voting is sensitive to poor calibration and erro-
neous pose detections, both of which are common in sports
datasets.

The method in [6] attempts to increase the speed of
multi-person 3DPS models by reducing the state-space to
all pairwise joint triangulations, although the method only
runs at 1fps for a single subject. A model-based tracking al-
gorithm and 2D pose detections are fused in [13] to achieve
multi-person motion capture from minimal viewpoints, al-
though their algorithm requires initialization of every per-
son in the scene. Recent work [12] finds correspondences
between 2D poses in multiple views in an optimization
framework, combining epipolar geometry costs and CNN
appearance descriptors. A second stage fits a 3DPS model
to each person individually. The use of appearance mod-
els is not applicable in sports, where players wear match-
ing outfits. The method runs at 10fps on 3-person datasets;
significantly faster processing times are required for sports
broadcast applications.

Our method employs a greedy search to find correspon-
dences between 2D poses in different camera views, and is
able to achieve this at video-rate speeds. It relies solely
on geometry terms, rather than appearance models. The
method can compensate for some of the typical errors that
arise in multi-person 2D pose estimation. The 2D pose as-
sociations can be used to generate 3D skeletons, which are
tracked temporally, even in sequences with heavy occlusion
and erroneous pose detections.



Figure 2: An overview of the pipeline. Our method finds correspondences between 2D pose estimations in multiple views.
We compute 3D skeletons each frame, identify tracks of 3D skeletons and filter the results.

3. Methodology
The proposed framework takes as input multi-view video

of multiple people and camera calibration. The multi-view
videos are passed through a pose detector [10] providing
unsorted 2D pose estimations each frame. Three successive
processes are applied to the data: the first step corrects some
of the errors in the output of the pose detector; the second
step applies a label to every 2D pose, ensuring consistency
between views; finally, the labelled 2D poses each frame
are used to produce a sequence of tracked 3D skeletons. A
system overview is presented in Figure 2.
2D Pose Error Correction: Single and multi-view infor-
mation is used to correct some of the errors found in the
pose detector output: part flipping, single-person splitting,
and multiple-person fusion. Flipped body parts are cor-
rected by comparing the correspondence scores of the orig-
inal and reversed poses. Candidate split poses are identified
and subsequently corrected in the pose association stage.
Per-frame 2D Pose Association: Associations between 2D
poses in differing camera views are found using a greedy
algorithm. These associations are used to generate a set of
labels, such that poses belonging to a single person share a
common label.
3D Skeleton Tracking: The labelled 2D poses are used
to generate 3D skeletons each frame. Associations are
found between skeletons in consecutive frames, resulting
in tracked 3D skeletons to which filtering is applied.

3.1. Per-frame 2D Pose Association

The aim of this stage is to find a label for each 2D pose
whereby all poses that correspond to one person share a la-
bel. A cost is assigned to all pairs of poses between views
that measures the likelihood of their being in correspon-
dence; this is used as the heuristic in finding associated
poses in a greedy algorithm. The algorithm takes a cyclic

approach, whereby new associations provide additional in-
formation about the location of skeletons in 3-space, thus
the correspondence costs can be refined before the next it-
eration.

The input to this stage is the 2D pose detections, which
have passed through the error correction process described
in section 3.2. The i-th pose in camera c is given by
pci ∈ R50, which comprises the coordinates of 25 joint de-
tections. The pose detector also provides a confidence for
each joint, αci ∈ R25. The j-th joint in pci is given by pcij ,
and similarly αcij is the confidence of joint j. A confidence
of zero signifies that the joint was undetected in the image.
The algorithm outlined in this section produces labels for
each 2D pose; these can be used to generate 3D skeletons,
s ∈ S as described in section 3.3. 3D skeletons may be
indexed either by their associated 2D poses (sci is the skele-
ton associated with pci ), or by their assigned label (sI is the
skeleton generated from all poses with label I).

3.1.1 Correspondence Costs

Upon the first iteration of the algorithm, correspondence
costs are computed between all pairs of 2D poses in dif-
ferent views. The pose correspondence cost comprises per-
joint costs for every joint the two poses have in common
(an undetected joint has a confidence of zero). The per-
joint cost could be estimated as the deviation of the detec-
tions from their respective epipolar lines, however, we opt
to use the distance of the common perpendicular vector be-
tween the two rays extending from the centres-of-projection
(COPs) through the joint detections. The advantages are
twofold: unlike an epipolar or reprojection error, this met-
ric is invariant to both the distance of the joint from the
COP, and the resolution of the camera; secondly, the cost
is measured in 3-space, and thus can be compared to 2D-
3D and 3D-3D joint correspondences, which occur in later
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Figure 3: Visualization of the three types of joint correspondence scores.

iterations of the algorithm. The cost of associating joint j
in pose x of camera a and pose y of camera b is shown in
Equation 1, and illustrated in Figure 3a.

E2D(paxj , p
b
yj) =

minm,n‖P−1
a (paxj ,m)− P−1

b (pbyj , n)‖√
αaxjα

b
yj

(1)
where P−1

a is the inverse projection function of camera a,
thus P−1

a (paxj ,m) is the point at distance m along the ray
extending from the coordinates of joint j in pose pax.

After each iteration the newly associated 2D poses are
used to infer 3D joint locations. 3D joint positions are sub-
sequently used over 2D joint coordinates where possible,
thus the correspondence costs will include 2D-3D (Equa-
tion 2, Figure 3b), and 3D-3D correspondences (Equation
3, Figure 3c):

E2D−3D(paxj , s
b
yj) =

minm‖P−1
a (paxj ,m)− sbyj‖

αaxj
(2)

E3D(saxj , s
b
yj) = ‖saxj − sbyj‖ (3)

where sby is the 3D skeleton associated with 2D pose pby .
Finally, the complete correspondence score between the full
poses pax and pby is calculated as:

σ(pax, p
b
y) =

∑
j E

X∑
j 1

, {αaxj , αbyj > 0} (4)

where EX represents, in order of preference, Equation 3, 2
then 1, as shown in Equation 5:

EX =


E3D(saxj , s

b
yj), if A(paxj) = A(pbyj) = 1

E2D−3D(paxj , s
b
yj), if A(pax) 6= A(pby)

E2D(paxj , p
b
yj), if A(paxj) = A(pbyj) = 0

(5)
A(paxj) = 1 if saxj has been computed, or 0 otherwise. The
3D-3D and 2D-3D scores are favoured over 2D-2D scores
for their reduced ambiguity.

3.1.2 Pose Association Algorithm

The process for finding correspondences and allocating la-
bels is outlined in algorithm 1.

Data: 2D poses
Result: Label associated with every 2D pose
while new valid correspondence do

re-issue pose labels;
calculate new 3D joint locations;
recompute correspondence scores;

end
Algorithm 1: Per-frame pose association

New Correspondences: New pose correspondences are
sought in a greedy fashion; pairs of poses are ranked ac-
cording to:

r(pax, p
b
y) =

σ(pax, p
b
y)

ω(pax, p
b
y)γ(p

a
x)γ(p

b
y)

(6)

where ω denotes the number of shared joints between two
poses, and γ(pax) is the number of poses already associated
with pax. The ordered list is traversed and the first valid asso-
ciation is found. An association is deemed valid if the corre-
spondence score σ is below the empirically estimated corre-
spondence threshold τc = 0.4. Furthermore, all dependent
associations must be considered simultaneously. For exam-
ple, if there is an existing association between (pa1 , p

b
3), and

we wish to associate (pb3, p
c
2), then (pa1 , p

c
2) must also be as-

sociated. Therefore, in order to ensure a new association
is valid, the average correspondence score of all dependent
associations must be below threshold τc.

If a valid association is found, the labels are updated
such that all associated poses share a common label, and
all poses without associations have a unique label. For any
poses with updated labels, the 3D joints are recomputed us-
ing the method in section 3.3. Finally, the correspondence
scores are updated as per section 3.1.1, using newly com-
puted 3D joints where possible, and the list is recomputed.
The algorithm repeats until no more valid pose associations
are possible.



3.2. 2D Pose Error Correction
The pose detector provides 2D pose estimations and as-

sociated joint confidences. Several common errors pass
through this stage with high confidence: (1) left-right limb
swaps; (2) single-person division into multiple poses; (3)
multiple-person fusion into a single pose. Temporal filter-
ing and tracking at the pose estimation stage could help to
rectify these errors; this is an active research area [2, 3, 19].
Instead, we aim to correct these errors on a per-frame ba-
sis, maintaining the applicability of our pose labelling algo-
rithm to short sequences and individual frames.
Joint Swaps: We observe that true correspondence scores
are lowered when a pose contains swapped limbs. To this
end, we propose a heuristic to determine likelihood of a pair
of limbs being incorrectly swapped based on the average
minimum correspondence score with other poses. A pair of
limbs is deemed incorrectly flipped if Equation 7 is satis-
fied:

L(p̂ax)

L(pax)
< τf (7)

where pax and p̂ax respectively are the original and flipped
version of pose x in camera a, and τf is an empirically esti-
mated threshold to determine whether a flip is necessary. L
is defined as:

L(pax) =

∑
bM(pax, b)χτc〈M(pax, b)〉(∑

b χτc〈M(pax, b)〉
)2 , {b 6= a, b ∈ C}

(8)
L(pax) is the average minimum correspondence score for all
other camera views b. It excludes cameras where no pose
correspondences are below threshold τc. Squaring the de-
nominator favours correspondences in multiple camera im-
ages. M(pax, b) is the minimum correspondence score be-
tween pax and all poses in camera b, and is defined as:

M(pax, b) = min
y
σ2D(p

a
x, p

b
y) (9)

where σ2D is the pose correspondence score seen in Equa-
tion 4, using only 2D joint correspondences. χτc is a thresh-
olding function used to eliminate pose correspondences be-
low threshold τc = 0.2, and is given by:

χτc〈l〉 =

{
1, if l < τc

0, otherwise
(10)

Single-person Division: In some cases, the joint detections
for a single person will be incorrectly split into two or more
poses. In cases where a single person is associated with
multiple separate 2D poses in a single image, they will typ-
ically have no common joints between them. If the poses
do share a joint, it will have the same image coordinates.
For all pairwise combinations of poses in a single image,

the number of common joints is computed; this sum dis-
regards any common joints for which the distance between
the coordinates is below a threshold - i.e. nominally identi-
cal coordinates. In the pose association stage (section 3.1),
the association of multiple poses within the same image is
allowed, provided they have zero joints in common and both
associate well with a tertiary pose in another image.
Multiple-person fusion: A single pose-detection may
sometimes span multiple people in the scene, identifying
a subset of joints of each. Two problems must be solved in
correcting this category of error: how to recognize when it
has occurred; how to identify the subsets of the joints that
correspond to different people. The large number of possi-
ble divisions of a 25-joint pose into an indeterminate num-
ber of subsets belonging to separate people means identify-
ing and correcting this error is highly challenging; it may
not be possible to achieve in real-time.

The result of the 2D pose association stage is a label for
each pose. We define rules for creating ground truth labels
that handle instances of multiple-person fusion. In cases
where a large majority (>70%) of joints in a single pose be-
long to one person, it is assigned the majority ground truth
label. In other cases, assigning a ground truth label to a pose
is ambiguous, so it is given a unique label that disassociates
it from other poses. No changes are made to the 2D pose as-
sociation stage. In instances of multiple-person fusion, the
pose is either disassociated from all other poses due to a bad
correspondence score, or associated with the person whose
joints make up a majority. This allows for cases where a
minority of joints in a pose are associated incorrectly; these
will be disregarded using outlier detection in the subsequent
triangulation stage.

3.3. 3D Skeleton Tracking

The output from section 3.1 is a label per 2D pose.
Where multiple poses have the same label, it is possible to
estimate a 3D skeleton. The 3D location of each joint sIj in
a skeleton with label I is optimised per:

argmin
sIj

∑
c

∑
i

αcij‖Pc(sIj)− pcij‖, {pi ∈ I, c ∈ C}

(11)
where Pc(sIj) is a is the projection of sIj in camera c. This
results in a set of 3D skeletons per frame. RANSAC is used
during the triangulation process to eliminate outlier pose
detections. The bone lengths of the resultant skeleton are
thresholded to remove any remaining outlier 3D joints.

Following this step, our notation is adjusted to no longer
consider cameras, and instead consider multiple frames; stI
now represents skeleton I in frame t ∈ T . St is the set of all
skeletons in frame t. αtIj ∈ {0, 1} now represents whether
joint j in skeleton I at frame t exists.

The 3D skeleton tracking stage takes unsorted 3D skele-
tons for all frames and returns sequences of 4D skeletons



and their component 2D poses. A greedy algorithm is used
to first find correspondences between skeletons in succes-
sive frames. The search is then extended to increasingly
separated frames up to a maximum of τmax. This allows
tracking of skeletons that are not present in every frame,
due to error in the association process or occlusion. This
process is outlined in algorithm 2.

Data: 3D skeletons every frame
Result: Sequences of 3D skeletons
for i = 1 to τmax do

list correspondences;
for t ∈ T do

for sta ∈ St and st−ib ∈ St−i do
correspondences.add(sta,st−ib );

end
end
correspondences.sort();
for c in correspondences do

if c.cost<Ts then
c.conjoin();

end
end

end
Algorithm 2: Per-frame pose association

Correspondence Cost: The correspondence costs between
pairs of skeletons is the same as described in section 3.1.1,
using only the 3D-3D joint terms:

σ3D(st1I , s
t2
J ) =

∑
j E

3D−3D(st1Ij , s
t2
Jj)α

t1
Ijα

t2
Jj∑

j α
t1
Ijα

t2
Jj

(12)

where E3D−3D is the 3D joint correspondence cost de-
scribed in Equation 3. Correspondence costs are computed
for all pairwise combinations of skeletons in neighbouring
frames. All pairs of skeletons in the sequence are sorted by
increasing value of σ3D/ρ, where ρ represents the intersec-
tion over union of the joints in each skeleton.
Selecting Correspondences: After ranking all candidate
skeleton correspondences, true correspondences can be de-
fined. The list is traversed, and if a correspondence cost σ3D

is below threshold Ts the two skeletons are connected. Ts is
an empirically obtained threshold defining the maximum al-
lowable difference in σ3D between successive frames. The
process is repeated for increasing time differences, up to
τmax.
Skeleton Tracks: After all possible skeleton correspon-
dences have been made, the result is tracks of skeletons
throughout the video sequence. Each track is traversed, and
both the length of the track and the average number of joints
in each frame are computed. Tracks shorter than Tl frames
and with fewer than Tj joints on average are culled. Both
thresholds are chosen empirically; we choose values 30 and

5 respectively. Ts is re-employed to identify and remove
noisy joints in each skeleton track with respect to neigh-
bouring frames. Missing joints are linearly interpolated pro-
vided that the correspondence of the same joint in the two
neighbouring frames falls below threshold Ts. A 3-frame
triangle filter is applied to all skeleton tracks to smooth the
final result. We compute the tracking stage offline, how-
ever the time taken to complete this process is negligible,
so it could be computed in real-time with a latency of τmax
frames.

4. Results & Evaluation
We test our method on a variety of datasets, both sports

and otherwise. We separately evaluate the results of both
the 2D pose association algorithm and the 3D skeleton es-
timation. We assess the accuracy of the 2D pose associa-
tion method on synthetic multi-view multi-person images.
For the evaluation of the 3D skeleton estimation we use the
Campus [7] and Shelf [5] datasets, and compare our results
to state-of-the-art methods. We also present results of the
entire pipeline on a selection of sports datasets.

4.1. 2D Pose Association

We create synthetic multi-view images of multiple peo-
ple using tools provided with the SURREAL dataset [35];
the scenes comprise textured models in a variety of poses.
We create image sets with varying numbers of people and
cameras, and with both narrow and wide-baseline camera
arrangements. The subjects are contained within a circle of
radius 2.5m, and the cameras on a circle of radius 5m. The
narrow-baseline cameras have a spacing of 10-degrees, and
the wide-baseline cameras are equispaced around the cir-
cle. We run the pose detector on the images, and assign a
ground truth label to each detected pose. For poses where
the joints belong to two or more people we assign the label
of the person whose joints are the majority (>70%).

We run our algorithm on each set of images, and generate
a binary matrix where each cell represents a pair of poses; 1
represents a correspondence, and 0 otherwise. We evaluate
the accuracy over the matrix, using our ground truth labels.
The results can be seen in Table 1. The algorithm achieves a
higher accuracy with the wide-baseline camera arrangement
for a smaller number of cameras, and a larger number of
people. This is due to improved robustness to occlusion and
triangulation accuracy with wide-baseline views. Notably,
the algorithm achieves 100% on scenes with two people for
all camera setups.

4.2. 3D Skeleton Estimation

As there are no public domain multi-view sports datasets
or existing algorithms applied to multi-person tracking in
sports, we evaluate on two public datasets with 3-5 cameras
and 3 people: Campus [7] and Shelf [5]. We calculate the



People
Cameras

2 4 8
Narrow-baseline

2 100.00% 100.00% 100.00%
4 96.50% 97.55% 99.08%
6 95.78% 96.33% 98.15%
8 94.60% 98.41% 98.34%

Wide-baseline
2 100.00% 100.00% 100.00%
4 97.78% 96.36% 98.47%
6 97.71% 98.03% 98.56%
8 97.68% 98.55% 98.44%

Table 1: The accuracy of pose correspondences in a narrow
and wide-baseline arrangement.

percentage of correct parts (PCP) for each actor. The PCP
denotes a body part as correct if the two estimated com-
ponent joints are less than 50% of the true body-part length
away from their ground-truth locations. The alternative def-
inition used by [12] uses the average of the distance of the
two joints; we also compute this metric, which we denote
by (A). We compare to the methods in [1, 6, 12, 14]. These
methods are all designed for general scenes and employ
3DPS models to refine the final skeletons; our method is
designed to work on challenging sports scenes, and uses tri-
angulation to estimate the 3D skeleton for speed. We com-
pare the results of 3D skeleton estimation per-frame, and
also following the skeleton tracking and temporal filtering
stage (section 3.3) which we denote by (ST).

The provided ground truth joints are for the skeleton
used in [6], whereas our pose estimator uses a different
skeleton. Thus we compute the PCP over all body parts
except for the head. The results of the Campus and Shelf
dataset are shown in Tables 2a and 2b. Comparing our
scores to previous methods, the state-of-the-art achieves a
higher performance on the 3-view Campus dataset. How-
ever, all other methods use a 3DPS model to constrain the
final joint positions; pictorial structure models have been
shown to result in more accurate joint estimations than tri-
angulation when the number of views is small [12]. On the
5-view Shelf dataset we achieve a score that is compara-
ble to the state-of-the-art, despite not employing pose pri-
ors. Although the performance of our direct triangulation
is typically lower than using methods with priors, our algo-
rithm also outputs temporally and spatially corresponding
2D poses for the entire sequence, allowing any method to
be substituted for estimating the 3D skeletons.

4.3. Skeleton Tracking

We present qualitative results on a number of internal
sports datasets that are summarized in Table 3. We ap-
ply the full pipeline (error correction, 2D pose association,
3D skeleton tracking) to these datasets, and overlay the fi-
nal skeletons on the original images. The soccer dataset

Campus Dataset [7]
Method Actor 1 Actor 2 Actor 3
Amin et al. [1] 85.00 76.56 73.70
Belagiannis et al. [6] 93.45 75.65 84.37
Ershadi-Nasab et al. [14] 94.18 92.89 84.62
Proposed 85.26 88.54 89.77
Proposed (ST) 86.62 89.01 90.66
Dong et al. [12] 97.60 93.30 98.00
Proposed (A) 91.84 92.48 92.83
Proposed (A, ST) 91.84 92.71 93.16

(a)

Shelf Dataset [5]
Method Actor 1 Actor 2 Actor 3
Amin et al. [1] 72.42 69.41 85.23
Belagiannis et al. [6] 75.26 69.68 87.59
Ershadi-Nasab et al. [14] 93.29 75.85 94.83
Proposed 98.25 81.68 97.10
Proposed (ST) 98.77 85.89 97.10
Dong et al. [12] 98.80 94.10 97.80
Proposed (A) 99.28 91.59 97.58
Proposed (A, ST) 99.68 92.79 97.72

(b)

Table 2: Comparison of the PCP on the Campus (a) and
Shelf (b) datasets.

is particularly challenging, due to poor calibration and the
small size of the players in the image; the average bound-
ing box for each player is only 44×79 pixels. To produce
2D pose estimations of the soccer players, we first detect
their bounding boxes using [17], then run the pose detector
on the cropped images. The 2D pose detections on images
this small are frequently erroneous or missing, especially in
cases of overlapping people. Selected frames from the final
results can be seen in Figure 4 and a video of the results is
included in the supplementary material.

Dataset C P R D F
Table-tennis [22] 6 4 720p 2.92m 5308

Boxing 8 5 2160p 6.38m 1000
Karate 16 2 2160p 2.28m 1012

Soccer [16] 6 24 1080p ∼48m 120

Table 3: Properties of the datasets used for qualitative eval-
uation: number of cameras (C); number of people (P); cam-
era resolution (R); average camera distance from origin (D);
and number of frames (F).

To assess the quality of the tracking, we compute the
number of ID switches, a metric commonly used in multi-
object tracking [24] that counts the number of times a
tracked object is assigned a new identity. These scores are
shown in Table 4.



Frame 600 Frame 2880 Frame 45 Frame 921

Frame 1 Frame 481 Frame 1 Frame 120

Figure 4: A selection of frames from the table-tennis, boxing, karate and soccer datasets showing results of 3D skeleton
estimation plus tracking.

Dataset F TP IDS Norm. IDS
Table-tennis 5308 4 7 3.3× 10−4

Boxing 1000 5 0 0
Karate 1012 2 0 0
Soccer 120 19 1 4.3× 10−4

Table 4: The number of frames (F), tracked people (TP), ID
switches (IDS), and ID switches after adjusting for number
of frames and number of tracked people (Norm. IDS) in
each dataset.

In the boxing and karate datasets, all subjects maintain
their tracking for the duration of the sequence, even during
close contact. In the table-tennis dataset five ID switches
are due to subjects leaving the capture volume, and two are
due to tracking failures. This may be due in part to poorly
estimated distortion parameters, which are observable in the
results in Figure 4. In the soccer dataset, 18 out of 19 recon-
structed players maintain their tracking over the sequence,
despite extended spells of missing frames due to absent 2D
pose detections.

4.4. Processing Time

We run our method on a desktop with an Intel i7 3.2GHz
processor and 64GB of RAM. All stated speeds are given
pre-computed 2D pose estimation. Our parallelized imple-
mentation runs at over 110fps on the Shelf dataset. The 2D

pose association stage is the most computationally expen-
sive, but the time taken to track the 3D skeletons is negligi-
ble - however it does introduce a latency due to the temporal
filtering. The methods in [6] and [12], which both use pic-
torial structure models, run at approximately 1fps and 10fps
respectively.

5. Conclusions

In this paper we presented a new method for comput-
ing tracked 3D skeletons of people from multi-view sports
video. Our pose-matching algorithm compensates for errors
in the pose detections, and can identify correspondences be-
tween 2D poses in different viewpoints. The algorithm is
capable of running in real-time on the Campus and Shelf
datasets. Our tracking algorithm has been shown to effec-
tively track players a crowded soccer scene with missing
and noisy detections. Our method requires no modelling of
actor appearance, and manages to perform well with poor
camera calibration and erroneous pose detections.
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