
Noname manuscript No.
(will be inserted by the editor)

Real-time Multi-person Motion Capture
from Multi-View Video and IMUs

Charles Malleson · John Collomosse · Adrian Hilton

Received: January 2019

Abstract A real-time motion capture system is pre-

sented which uses input from multiple standard video

cameras and inertial measurement units (IMUs). The

system is able to track multiple people simultaneously

and requires no optical markers, specialized infra-red

cameras or foreground/background segmentation, mak-

ing it applicable to general indoor and outdoor scenar-

ios with dynamic backgrounds and lighting. To over-

come limitations of prior video or IMU-only approaches,

we propose to use flexible combinations of multiple-

view, calibrated video and IMU input along with a pose

prior in an online optimization-based framework, which

allows the full 6-DoF motion to be recovered includ-

ing axial rotation of limbs and drift-free global posi-

tion. A method for sorting and assigning raw input 2D

keypoint detections into corresponding subjects is pre-

sented which facilitates multi-person tracking and re-

jection of any bystanders in the scene. The approach

is evaluated on data from several indoor and outdoor

capture environments with one or more subjects and

the trade-off between input sparsity and tracking per-

formance is discussed. State-of-the-art pose estimation

performance is obtained on the Total Capture (mutli-

view video and IMU) and Human 3.6M (multi-view

video) datasets. Finally, a live demonstrator for the ap-

proach is presented showing real-time capture, solving

and character animation using a light-weight, commod-

ity hardware setup.
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1 Introduction

Real-time capture of human motion is of considerable

interest in various domains including entertainment and

the life sciences. Recent advances in computer vision

(e.g . Captury (2017)) and the availability of commodity

wireless inertial sensors (e.g . Roetenberg et al. (2013);

PerceptionNeuron (2017)) are beginning to take motion

capture from constrained studio settings to more natu-

ral, outdoor environments, and with less encumbrance

of the performers from specialized costumes and optical

marker setups traditionally required (e.g . Vicon (2017);

OptiTrack (2017)), while still retaining a high level of

capture fidelity.

In the proposed approach, we fuse multi-modal in-

put from inertial sensors and multiple cameras to pro-

duce an estimate of the full 3D pose of one or more

subjects in real time without requiring optical markers

or a complex hardware setup (Figure 1). A solver opti-

mizes the kinematic pose of the subject based on a cost

function comprising orientation, acceleration, 2D posi-

tion and statistical pose prior terms. The orientation

and acceleration constraints are provided by a sparse

set of inertial measurement units (IMUs) attached to

body segments, and positional constraints are obtained

from 2D joint detections from video cameras (Cao et al.

(2017)). Combining video and IMU data improves the

tracking performance compared to one or the other.

The IMUs provide full rotational information for body

segments, while the video information provides drift-

free 3D global position information.



2 Charles Malleson et al.

Fig. 1 Real-time full-3D motion capture of multiple people
in unconstrained environments without visual markers.

This work is an extension of the work of Malleson

et al. (2017). The proposed approach leads to signifi-

cant improvements in solved pose accuracy compared to

Malleson et al. (2017) and supports tracking of multiple

subjects. Furthermore, several additional experiments

have been performed, with additional test datasets and

comparisons to further methods from the literature.

The contributions of this work are as follows:

(1) Improved kinematic pose accuracy through, (a)

use of calibrated 3D offsets between detected keypoint

locations and solve skeleton, (b) use of an expanded 25

keypoint CPM detection input (vs. 12 used in Malleson

et al. (2017)), and (c) addition of a floor penetration

term. (2) Simultaneous tracking of multiple subjects

through use of an efficient detection sorting mechanism

which can operate in the presence of bystanders and

mis-detections in the images. (3) Extensive further eval-

uation with additional test datasets, more detailed error

statistics and treatment of single modality and monoc-

ular input cases. (4) Creation of a new multi-view video

plus IMU dataset Outdoor Duo featuring two subjects

performing diverse actions in uncontrolled outdoor set-

tings. (5) Exposition of a light-weight demonstrator im-

plementation with live motion output to a game engine

environment and displayed in VR.

The remainder of the paper is structured as follows.

Section 2 puts this work in the context of related work.

Section 3 describes the approach. In Section 4, quantita-

tive and qualitative evaluation is presented followed by

a description of the implementation of our live demon-

strator system. Finally, conclusions and future work are

presented in Section 5.

2 Related work

Various approaches exist in the literature for estimating

human pose from video and other sensor data. To the

best of our knowledge, the proposed approach is the

first to use multiple views of natural video along with

IMU input to estimate the global kinematic pose of one

or more subjects in real time. Below we cover the most

closely related prior works.

Convolutional Pose Machines (CPMs), proposed by

Wei et al. (2016) and Cao et al. (2017), use deep neu-

ral networks to estimate 2D pose (joint and surface

keypoint locations) for multiple people from a single

image, with video rate detection possible using GPU

acceleration. As the pose is 2D, there is no explicit con-

servation of bone lengths, and the axial rotations of

limbs are not estimated. Our approach uses keypoint

detections from CPMs over multiple camera views in

combination with IMU data as input in a robust kine-

matic optimization to obtain accurate global 3D pose in

real time. This kinematic pose output inherently main-

tains bone length and can be used directly to drive

3D character animation. Various works use neural net-

works to infer 3D pose directly from monocular cam-

eras, e.g . Li et al. (2017); Tekin et al. (2016); Lin et al.

(2017); Martinez et al. (2017); Mehta et al. (2018);

Tome et al. (2018). In Tome et al. (2017), CPMs are

extended to ‘lift’ 3D pose from a single RGB image

by incorporating knowledge of plausible human poses

in the training, while in Tome et al. (2018) the lifting

approach is improved by refining detection estimates

in an end-to-end approach. In ‘VNect’, proposed by

Mehta et al. (2017), 3D pose is estimated in real time

from a single camera using convolutional neural net-

works (CNNs) and kinematic fitting, while Zhou et al.

(2016) perform 2D joint detection using CNNs and esti-

mate 3D pose using offline Expectation-Maximization

over an entire sequence. Mehta et al. (2018) perform

multi-person 3D pose estimation from monocular video

using CNNs along with a occlusion-robust pose-map

(ORPM) formulation for handling of strong partial oc-

clusion. In Zanfir et al. (2018), the 3D pose and shape

of multiple people are estimated from monocular video

by fitting parametric body models using optimization

of an estimated ground plane, exclusion of multiple oc-

cupancy, and temporal trajectory optimization while in

the DensePose approach of Alp Gler et al. (2018), sur-

face meshes are fitted to single view images producing

dense pose correspondences. In unconstrained settings,

monocular approaches are inherently subject to ambi-

guity in depth limiting their ability to recover absolute

position and scale.
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Elhayek et al. (2015) use CNNs to track multiple

subjects from a sparse set of two or more cameras (the

approach is not real-time on current hardware, with a

reported runtime of > 1 second per frame for a single

subject using three cameras). Rhodin et al. (2016b) use

2D joint keypoint detections as well as body contours

to jointly optimize body shape and pose from a small

number of camera views while Joo et al. (2018) capture

body, hand and facial motion from multiple view video

by offline optimization of a deformable 3D body model.

IMUs and multi-view video data have been com-

bined by Von Marcard et al. (2016) to exploit the com-

plementary properties of the data sources, i.e. drift free

position from video and 3D limb orientation from IMUs.

However no comparison is performed against commer-

cial reference-quality motion capture (instead the re-

sults are compared with respect to consistency with sil-

houettes and IMU measurements), and processing time

is not specified. Andrews et al. (2016) perform real-

time body tracking using a sparse set of labelled optical

markers, IMUs, and a motion prior in an inverse dy-

namics formulation. In contrast, our approach does not

use optical markers and does not require setting up a

physics model of the subject. The ‘Sparse Inertial Poser’

(SIP) system proposed by von Marcard et al. (2017)

uses orientation and acceleration from 6 IMUs as input

and is assisted by a prior pose model in the form of the

SMPL body model (Loper et al. (2015)). However, be-

cause SIP processes sequences as a batch it is not suit-

able for online operation and the lack of visual informa-

tion makes it susceptible to drift in global position. In

‘Deep Inertial Poser’ (DIP), Huang et al. (2018) recover

local pose using a sparse set of 6 IMUs using a sliding

window of frames for online operation. Our system uses

input from cameras in addition to sparse IMUs, pro-

cesses sequences online in real-time and is able to re-

cover drift-free global position. In their ‘Video Inertial

Poser’ (VIP) approach, von Marcard et al. (2018) esti-

mate the 3D pose of multiple subjects given monocular

camera and IMU input. Association between 2D detec-

tions and 3D subjects are obtained using a graph based

optimization enforcing 3D to 2D coherency within a

frame and across long range frames. Parameters for the

shape and pose of the SMPL statistical body model

(Loper et al. (2015)) are jointly optimized along with

IMU heading drift. In VIP, all frames are optimized

simultaneously, precluding real-time operation. In con-

trast our approach, with its frame-to-frame processing

and simple detection sorting mechanism operates online

with multiple subjects at at video rates.

Trumble et al. (2016) use convolutional neural net-

works on multi-view video data to perform human pose

estimation. In subsequent work, Trumble et al. (2017)

combined video and IMU input in a deep learning frame-

work, including using an LSTM (long short term mem-

ory, Hochreiter and Schmidhuber (1997)) for temporal

prediction to reduce noise, and later using a deep au-

toencoder (Trumble et al. (2018)) to recover a both

skeletal pose (as joint positions) and detailed 3D body

shape over time. These approaches require extensive

training from multi-view video data and the axial ro-

tation of the limbs cannot be recovered since the input

is based on visual hulls. Furthermore, in common with

all visual-hull based approaches, they require accurate

foreground-background segmentation, typically requir-

ing controlled capture conditions, extensive computa-

tion time or manually-assisted segmentation. In con-

trast, our method requires minimal, simple training of

the pose prior, while using a pre-trained CPM detec-

tor for 2D detections. By incorporating IMU data, our

method is able to recover axial rotation of the limbs

while handling dynamic backgrounds and occlusions.

Introducing environmental constraints into video-

based pose estimation can help resolve ambiguities in

detection. For instance, Rosenhahn et al. (2008) inte-

grate knowledge of the floor location to discourage ver-

tices in a solved body surface mesh from penetrating

the floor. In the proposed approach, which does not

consider surface geometry, a simple floor penetration

constraint is applied to specific targets in the skeleton

(i.e. the foot and toe joints).

Various recent approaches to real-time body track-

ing use other types of capture hardware, for example

two fisheye cameras attached to the subject (Rhodin

et al. (2016a)), Kinect RGBD cameras (Wei et al. (2012);

Ichim and Tombari (2016)), Kinect plus IMUs (Hel-

ten et al. (2013)), HTC Vive infra-red VR controllers

strapped to the limbs (IKinema (2017)), or radio fre-

quency (RF) equipment (Zhao et al. (2018)). Such hard-

ware is typically limited to indoor capture environments.

In Malleson et al. (2017), full-body markerless track-

ing of a single subject is performed in real-time in un-

constrained environments using multiple-view video with

as few as two cameras and 6 IMUs as input, recover-

ing the full DoF including axial rotation and drift-free

global position. In this work, we extend the approach

of Malleson et al.to provide more accurate pose and

to handle multiple people simultaneously. Furthermore,

we demonstrate operation with further reduced cam-

era/IMU input configurations and in less constrained

capture environments.

3 Method

The proposed approach obtains the kinematic pose of

multiple subjects in real time given input from any con-
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figuration of IMU or video input. First, the notation

and pose parametrization are presented in Section 3.1

followed by descriptions of the kinematic pose cost func-

tion and its optimization in Section 3.2. Next, in Sec-

tion 3.3, details of the generation and use of 2D key-

point detections are presented, i.e. efficiently perform-

ing 2D detection across multiple camera views, assign-

ing 2D detected people to their corresponding tracked

subjects, and use of optimized offsets between detec-

tions and their corresponding bones in the skeleton.

Implementation details, including details of the capture

setups used and live implementation of our approach

are deferred to the results section.

3.1 Notation and skeleton parametrization

For each tracked subject, a kinematic skeleton is de-

fined consisting of a pre-defined hierarchy of nb rigid

bones, b attached at joints. The root bone b = 1 (i.e.

the hips) has a global position, t1 and orientation, R1.

Each child bone, b ∈ [2, nb] is attached to its parent

with a fixed translational offset, tb, and pose-varying

rotation, Rb, w.r.t. the parent bone coordinates. In this

work, nb = 21 bones are used. The total degrees of free-

dom (DoF) are d = 3 + 3 × 21 = 66, consisting of the

root translation and 3 rotational degrees of freedom per

joint. The skeleton topology is the same for all subjects

and appropriate bone lengths are determined per sub-

ject (either from the calibrated skeleton obtained from

the optical reference data, if available, or by scaling

a reference skeleton according to the subject’s known

height).

We encode the pose of the skeleton as a single 66-

dimensional vector θ containing the 3D global trans-

lation of the root, followed by the stacked local joint

rotations of each bone (including the root), represented

as 3D angle-axis vectors (i.e. the axis of rotation mul-

tiplied by the angle of rotation in radians). This pa-

rameter vector is the variable which is optimized, with

the root translation t1 and joint rotations Rb being ex-

tracted and used in calculations as applicable.

For each bone, b, the global rigid body transform

Tg
b is computed by concatenating bone offset and joint

rotation transforms along the kinematic chain as fol-

lows:

Tg
b(θ) =

∏
b′∈P(b)

[
Rb′ tb′

0 1

]
(1)

where P(b) is the ordered set of parent joints of bone b.

We define a set of ni IMU track targets, i, each at-

tached to a bone bi. The rotational and translational

offsets of the IMU w.r.t. the bone are denoted Rib and

tib, respectively. The rotational transform between each

IMU reference frame and the global coordinates is de-

noted Rig. IMU orientation measurements (w.r.t. the

IMU inertial reference frame) and acceleration mea-

surements (w.r.t. the IMU device frame) are denoted

Ri and ai, respectively. Likewise, we define a set of np
positional track targets, p, each attached to a bone bp
with translational offset tpb w.r.t. the bone. Note that

here we use the term ‘track target’ to refer to any spe-

cific point on or in the body for which motion is esti-

mated, not a physical optical marker. In our approach

2D joint positions are estimated using natural images

and no visual markers are required.

Finally, we define a set of nc cameras, c with cali-

brated 3 × 4 projection matrices Pc and let tcp denote

the 2D position measurement for track target p in the

local coordinates of camera c.

3.2 Pose optimization

The kinematic pose of each tracked subject is optimized

independently according to the following cost function:

E(θ) = EData(θ) + EPrior(θ). (2)

The data cost

EData(θ) =

V ideo︷ ︸︸ ︷
EP (θ) +

IMU︷ ︸︸ ︷
ER(θ) + EA(θ)

(3)

incorporates positional constraints, EP based on 2D

keypoint detections from the input video as well as ori-

entation and acceleration constraints, ER and EA from

the input IMU measurements. The prior cost

EPrior(θ) =

PCA︷ ︸︸ ︷
EPP (θ) + EPD(θ) +

Floor︷ ︸︸ ︷
EFP (θ) (4)

contain PCA pose prior projection and deviation terms,

EPP and EPD as well as an optional floor penetration

term, EFP .

The proposed cost function extends that of Malleson

et al. (2017) by including the floor penetration term.

Each term in Equation 2 is described in the following

subsections, where solved values have a ‘ˆ’ circumflex

and their dependence on θ is omitted for clarity. Unless

otherwise specified, values are for the current frame, t.

In order to assess the effectiveness of each term in the

cost function, an ablation study is presented in Sec-

tion 4.1.2.
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Fig. 2 The solver objective function (Equation 2) comprises several terms, visualized in this figure. These are described in
detail in Section 3.2 and their relative importance is assessed through an ablation study in Section 4.1.2.

3.2.1 Position term

For each 2D positional measurement from each camera,

a constraint is added which seeks to minimize the Eu-

clidean distance between the measured 2D location in

camera coordinates and the solved global track target

location projected into the camera (Figure 2).

The solved global track target location, t̂gp is deter-

mined by applying the translational offset tpb to the

global bone transform Tg
bp

(as calculated according to

Equation 1):

t̂gp = τ t

(
τT (tpb) ·Tg

bp

)
(5)

where the operators τT (·) and τ t(·) are shorthand for

creating a transform matrix from a translation vector

and extracting the translation vector from a transform

matrix, respectively. This global target position is pro-

jected into each camera to obtain 2D solved targets t̂cp
in camera coordinates:

t̂cp = dh(Pct̂
g
p) (6)

where the operator dh(·) performs de-homogenization

of a homogeneous vector.

The position cost is defined as

EP (θ) =
∑

c∈[1,nc]

∑
p∈[1,np]

ρP

(
λPw

c
p‖t̂cp − tcp‖

2
2

)
(7)

where wc
p ∈ [0, 1] is a confidence weighting for con-

straint p obtained from the image-based keypoint posi-

tion measurement mechanism (in our case from a CPM-

based detection, see Section 3.3), λP is a position con-

straint weighting factor, ρP (·) is a loss function (see

Section 3.2.6). The confidence weighting wc
p and loss

function enable robust output pose estimates in spite

of persistently high levels of noise and frequent outliers

in input position detections.

Note that in Malleson et al. (2017), only joint key-

points were used as track targets and these were as-

sumed to correspond on average, to the joints in the

reference skeleton and thus have zero offset w.r.t. the

bone (tpb = 0). In order to account for any systematic

offset between the reference detected keypoints and the

corresponding joint in the reference skeleton, and to al-

low surface keypoints such as the ears and eyes to be

used as well, we propose to calibrate offsets tpb for the

reference skeleton and detector used (see Section 3.3.2

for details).

3.2.2 Orientation term

For each IMU, i, an orientation constraint is added

which seeks to minimize the relative orientation be-

tween the measured and solved global bone orientation

(Figure 2).

The measured global bone orientation, Rg
bi

is ob-

tained from the IMU measurement Ri using the IMU-

bone offset Rib and IMU reference frame-global offset

as follows:

Rg
bi

= Rig ·Ri · (Rib)
−1
. (8)

The solved global bone orientation, R̂g
b is obtained us-

ing the kinematic chain, ignoring translations:

R̂g
b =

∏
b′∈P(bi)

Rb′ . (9)

and the orientation cost is

ER(θ) =
∑

i∈[1,ni]

ρR

(
λR

∥∥∥ψ((R̂g
bi

)
−1

Rg
bi

)∥∥∥2
2

)
(10)

where ψ(·) extracts the vector part of the quaternion

representation of the rotation matrix, λR is orientation

constraint weighting factor, ρR(·) is a loss function. Dis-

cussion of the weightings and loss functions are deferred

to Section 3.2.6.

3.2.3 Acceleration term

In addition to orientation, the IMUs provide accelera-

tion measurements (in the local IMU coordinates). In

order to include an acceleration term, it is necessary to

consider a window of three frames: current frame to be

solved, t, and the previous two solved frames, t− 1 and

t− 2. For each IMU, a constraint is added which seeks
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to minimize the difference between the measured and

solved acceleration of the track target site (Figure 2).

The solved acceleration âg
i is computed by central fi-

nite differences using the solved pose from previous two

frames along with the current frame:

âg
i (t− 1) =

(
t̂gi (t)− 2t̂gi (t− 1) + t̂gi (t− 2)

)
/(∆t)2. (11)

where the solved IMU positions t̂gi are computed anal-

ogously with Equation 5 (replacing subscripts p with i)

and ∆t is the frame period.

The measured local accelerations from the previous

frame of IMU data1 are converted to global coordinates

as follows:

ag
i (t− 1) = Rig ·Ri(t− 1) · ai(t− 1)− ag (12)

where ag = [0, 9.8707, 0]T is the acceleration of gravity,

which needs to be subtracted. The acceleration cost is

then simply defined as

EA(θ) =
∑

i∈[1,ni]

ρA

(
λA

∥∥∥âg
i − ag

i

∥∥∥2
2

)
(13)

where once again λA is a constraint weighting factor,

ρA(·) is a loss function (see Section 3.2.6).

Note that the orientation constraints only require

the orientation offset of the IMU w.r.t. the bone to be

known, whereas the acceleration constraints require the

translational offset to be known as well.

It is well known that double integrating acceleration

to obtain position is prone to drift, thus these accelera-

tion terms alone are not sufficient to locate the body in

global coordinates over any length of time. The acceler-

ation term is included in the method for completeness,

however in the experiments, it was found not to improve

performance.

3.2.4 PCA prior terms

In practice, not all the body segments are observed in

the input - the kinematic skeleton has more degrees of

freedom than are constrained by the IMUs and posi-

tional measurements. For instance, the spine has sev-

eral segments, but has only one or two IMUs attached

to it. A pose prior is therefore required to constrain all

degrees of freedom and produce plausible poses in spite

of sparse or noisy sensor input.

In these experiments, two prior terms are incorpo-

rated based on a principal component analysis (PCA) of

a corpus of motion capture data. The pose prior should

be invariant to the global position and heading of the

1 The previous frame is used because central differences are
employed to estimate the solved acceleration.

subject. We therefore use θ̄, denoting the dp = d − 6

pose vector excluding the first six elements, in the pose

prior formulation.

A subset of ground-truth motion sequences from the

Total Capture dataset (Trumble et al. (2017)), covering

a wide variety of poses were used as training of the

PCA pose model. In order to obtain a representative

sample of poses without over-emphasis on commonly

recurring poses for standing and walking, for instance,

we perform k-means clustering on the full set of nf =

126, 000 training frames, with k = nf/100 = 1, 260. The

cluster centres are concatenated to form a k × dp data

matrix D and PCA is performed on the mean-centered

data. The dimensionality is reduced to dr = 23 (chosen

so as to keep 95% of the variance in the data) and the

resulting PCA model is a dp×dr coefficient matrix, M,

a dp-dimensional mean vector, µ and a dr-dimensional

vector of standard deviations, σ (the square-roots of

the principal component eigenvalues).

Similar to Ichim and Tombari (2016), we use two

priors based on the PCA of the pose: PCA projection

and PCA deviation. The projection prior encourages

the solved body pose to lie close to the reduced di-

mensionality subspace of prior poses (soft reduction in

the degrees of freedom of the joints), while the devia-

tion prior discourages deviation from the prior observed

pose variation (soft joint rotation limits). The pose pro-

jection cost is

EPP (θ) = ρPP

(
λPP

∥∥∥(θ̄−µ)−MMT (θ̄−µ)
∥∥∥2
2

)
(14)

and the pose deviation cost is

EPD(θ) = ρPD

(
λPD

∥∥∥diag(σ)−1MT (θ̄ − µ)
∥∥∥2
2

)
(15)

where, as with the data terms, weighting factors λ and

loss functions ρ are used (see Section 3.2.6). A geometric

interpretation of these constraints is shown in Figure 2.

Together these terms produce soft constraints that yield

plausible motion while not strictly enforcing a reduced

dimensionality on the solved pose, thus allowing novel

motion to be more faithfully reproduced at run time.

3.2.5 Floor penetration term

For indoor operation on a level surface, we are able

to include a simple constraint which disallows solved

positions of joints being below the floor level:

EFP (θ) =
∑
p∈pe

λFP ‖H(−[̂tgp]y + rp)‖22 (16)

where rp is a collision radius used to approximate the

distance between the joint and the surface (set to 5 cm
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in our experiments), the operator []y extracts the y com-

ponent of a vector, H is the Heaviside step function and

pi are the set of targets (joint centres) on for which the

constraint is enabled (see Figure 2). This constraint is

used for indoor capture scenarios in which the floor level

is known from the camera calibration, during which the

world coordinates are centred at floor level with the y-

axis up. Note that this term is not applicable to out-

door scenes which feature uneven terrain, and is thus

disabled for all our outdoor experiments. In our experi-

ments the constraint is added for the feet and toe joints

only in order to keep computation time low.

3.2.6 Energy minimization

As described in the previous subsections, weightings

λ are used to control the contributions of each term

to the overall cost in Equation 2. These are required

because the different terms compare different physical

quantities, and because some sources of data may be

more reliable than others - for instance IMU orienta-

tions may be more stable than noisy position trian-

gulations from images. Throughout the experiments,

the same weightings were used for the cost function

terms, namely λP = 1× 10−3, λR = 1, λA = 1× 10−3,

λPP = 0.7, λPD = 0.06 and λFP = 10. These val-

ues were arrived at by a gradient-based parameter op-

timization over 200 frames of one motion sequence (S1,

FS1) from the Total Capture dataset.

Furthermore, each term has a loss function, ρ(·) for

each residual. The purpose of the loss function is to

make the cost robust against outlier data (as well as to

allow deviation from the prior, when the measurements

support it). For the orientation constraints, a null loss is

used (standard L2 distance), since the IMUs tend not to

produce outlier measurements. For the position, accel-

eration, PCA projection prior and PCA deviation prior

a robust Cauchy loss function is used, ρ(x) = log(1+x).

The Cauchy loss function limits the effect of gross out-

liers by penalizing large residual values proportionally

less than small values. Using the robust loss functions

was found to be necessary to get good pose estimations

in the presence of outlier measurements as well as novel,

unseen poses.

The pose cost function E(θ) is optimized using the

Ceres non-linear least-squares solver (Agarwal et al.

(2017)). The position, orientation and acceleration con-

straints are only affected by parameters associated with

the bone to which they are attached and its parent

bones in the kinematic chain. Therefore, the Jacobian is

sparse and its computation can be sped up by using pa-

rameter blocks. The computation is further sped up us-

ing multi-threaded Jacobian computation. The solving

is performed using Levenberg-Marquardt with a sparse

normal Cholesky linear solver. For each frame, the pose

vector is initialized with the solved value from the pre-

vious frame, yielding full-body 6-DoF pose estimation

at real-time video rates.

3.3 2D keypoint detections from multi-view video

The convolutional pose machines (CPMs) detector of

Cao et al. (2017) as implemented in OpenPose2 is used

to obtain 2D keypoint detections tcp. The detector also

outputs confidences, wc
p. The detections are used in the

positional constraints for each view in the cost function

(Section 3.2.1) for each subject. Section 3.3.1 describes

our approach to resolving and assigning unordered in-

put 2D detections to each tracked subject.

Whereas Malleson et al. (2017) use 12 joint key-

points from the 15 keypoint MPI model in OpenPose

(shoulders, elbows, wrists, upper legs, knees and an-

kles), we use the ‘Body25’ model (which includes the

above as well as the mid hip, nose, eyes, ears, neck,

big toes, small toes and heels). In our experiments we

found the ‘Body25’ model to produce more accurate re-

sults (with reduced processing time) compared to the

‘MPI15’ and ‘COCO18’ models also available in Open-

Pose. In Section 3.3.2, we describe a procedure for cali-

brating 3D offsets between the CPM detector keypoints

and the corresponding bones in the kinematic skeleton.

Note that our approach is agnostic as to the source of

the 2D keypoint detections and any suitable 2D pose

keypoint detector could be used in place of the CPM

detector.

In order to increase detection throughput and main-

tain real-time frame-rates with multiple cameras, we

pack multiple camera views into a single frame for de-

tection (refer to Section 3.4 for details of the live im-

plementation).

3.3.1 Detection sorting

In order to track multiple subjects simultaneously and

to be robust against any incidental 2D detections in

the images (caused by bystanders or spurious detec-

tions), we sort the 2D detections as described below.

In our approach, only a designated set of subjects are

tracked and their initial locations are set manually (e.g .

through having the subjects begin at designated loca-

tions in the capture space). Any other subjects in the

scene should be designated as bystanders and rejected

by the detection sorter.

2 The implementation used is available from: https://

github.com/CMU-Perceptual-Computing-Lab/openpose
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The CPM-based 2D keypoint detector of Wei et al.

(2016) produces a set of 2D keypoints with confidences

for each detected person in each camera viewpoint C.

For brevity, we refer to each of these as a ‘2D person’,

P . In order to use these as input in our multi-person 3D

tracking approach, the correct 2D person must be as-

signed to each tracked subject S. The order of the raw

input 2D person detections is arbitrary and generally

not consistent between cameras or over time. In gen-

eral wide-baseline camera setups, assumptions such as

left/right consistency cannot be used. Moreover, a given

subject may be absent in a view due to occlusion, and

spurious detections may occur due to mis-detections or

bystanders being visible in the scene. In order to use the

2D person detections in our framework, they first need

to be sorted and assigned to the corresponding tracked

subject or discarded if they do not belong to any of the

tracked subjects.

The procedure for sorting the 2D person detections

over all subjects and camera views is presented in Al-

gorithm 1. In summary, all pairings of 2D person detec-

tions over each pair of camera views are putatively tri-

angulated and checked for consistency in re-projection.

Valid candidates are then matched to the expected 3D

locations of each tracked subject or discarded if no

match is found.

First, a set of 3D person candidates CandsAll is

initialized (line 1). This is used to store source camera

and 2D person indices as well as triangulated 3D posi-

tions for subject candidates. (Note that these putative

3D triangulations are only used in the detection sort-

ing stage and not in the kinematic pose optimization,

Equation 2, which uses the sorted 2D keypoints directly

and does not employ explicit triangulation.)

Triangulation is attempted across all pairs of 2D

people across all pairs of views to obtain a candidate

3D person P3D (line 2-6). Note that only keypoints

with non-zero confidences in both 2D person detections

are considered. Candidates which have an average re-

projection error above a threshold ThreshTriError are

rejected as these are likely to come from different peo-

ple (line 7). Note that this threshold needs to be set

relatively high, due to levels of noise in the 2D detec-

tions. However, if set too high, a high level of invalid

matches occurs. In the experiments, an empirical value

of 1.5% of the image width was used.

Next, P3D is compared to all candidates already in

CandsAll. If on average distance between the keypoints

in P3D and those in any existing candidate CandEx is

less than a threshold ThreshDistSamePerson (empir-

ically set to 30 cm in the experiments), P3D is assumed

to correspond to the same person and the current source

indices and 2D person are appended to CandEx (line

Actual subjects/bystanders

Candidate 3D subjects

Viable 3D triangulations
Invalid 3D triangulations Last seen 3D subjects
2D person detections

S1

S2

Cam 1
Cam 2

Cam 3

S2 S1-

-
S1

S2 S2

-

-

Fig. 3 Visualization of the proposed approach to sorting
and assigning 2D detections to tracked subjects. All pos-
sible pairings of detected person instances across views are
tested for image re-projection error. Triangulations with high
re-projection error are regarded as invalid, while viable tri-
angulations are clustered into candidate 3D subjects. Finally,
each tracked subject is assigned to the candidate 3D subject
closest to its last seen location.

8-9), otherwise they form a new candidate, CandNew,

which in turn is appended to CandsAll (line 10-12).

The candidate 3D detections CandsAll are assigned

to the tracked subjects S. In order to prevent assign-

ment of the same detections to more than one subject,

a condition variable CandAssigned is maintained to

keep track of which candidates have already been as-

signed to a subject (line 19-21). The sorted detections

are initialized empty (line 23). Finally, the closest un-

used candidate in CandsAll to the last viewed loca-

tion of the subject S, Subjects3DLast is determined

and SortedDetections(S) set if it is within a thresh-

old ThreshInterframeMovement (empirically set to

1 m in the experiments), the assumed maximum dis-

tance between the current and last viewed position of

the subject (line 24-30). A conceptual visualization of

the sorting approach is presented in Figure 3. Note that

the detection sorter requires at least two input cameras

due to the requirement for 3D triangulation, thus our

approach cannot currently handle multiple subjects in

the case of monocular input.

3.3.2 Positional track target offset calibration

As described in Section 3.1, the positional track tar-

gets, p are defined by a translational offset tpb w.r.t.

their corresponding bone b. Whereas surface keypoints

(e.g . ears, eyes) should clearly exhibit offsets from the

joints of their corresponding bones in the skeleton, joint

keypoints (e.g . knees, elbows) should theoretically not
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Algorithm 1 Sorting of 2D detections into subjects for

a single frame. Takes as input all 2D person detections

P from all camera views C and attempts to assign each

2D detection to its corresponding 3D tracked subject

S while disregarding any non-matching detections (e.g .

due to bystanders in the scene).

1: CandsAll← []
2: for all cams Ca : a ∈ [1, nc] do
3: for all 2D people Pa in Ca do
4: for all cams Cb : b ∈ [a+ 1, nc] do
5: for all 2D people Pb in Cb do
6: P3D ← Triagulate(Pa, Pb)
7: if TriError(P3D) < ThreshTriError then
8: if ∃ CandEx ∈ CandsAll such

that AveDist(CandEx, P3D) <
ThreshDistSamePerson then

9: CandEx
+← [(Ca, Pa), (Cb, Pb), P3D]

10: else
11: CandNew ← [(Ca, Pa), (Cb, Pb), P3D]

12: CandsAll
+← CandNew

13: end if
14: end if
15: end for
16: end for
17: end for
18: end for
19: for all candidates i in CandsAll do
20: CandAssigned(i)← false
21: end for
22: for S ∈ [1, ns] do
23: SortedDetectons(S)← []
24: [ibest, dbest] ← ClosestPersonInSet(CandsAll,

Subjects3DLast(S))
25: if dbest < ThreshInterFrameMovement and

CandAssigned(ibest) = false then
26: SortedDetectons(S)← CandsAll(ibest)
27: CandAssigned(ibest) = true
28: Subjects3DLast(S)← CandsAll(ibest)
29: end if
30: end for

be offset w.r.t. the bone joint (i.e. tpb = 0). In prac-

tice, however, systematic differences in reference and

estimated joint position can and do arise, for instance

due to inaccurate calibration of subject-specific opti-

cal mo-cap skeletons, or the characteristics of the data

used to train the detector. In Malleson et al. (2017),

only joint keypoints were used and the assumption of

zero offset w.r.t. the skeleton bones was made. In this

work, we attempt to mitigate systematic bias caused by

this by estimating calibrated offsets between the CPM

detected keypoints and our ‘ground truth’ optical ref-

erence skeleton. As is shown in Section 4.1.2, including

these calibrated offsets in the solve reduces the output

error substantially.

The following procedure is used to estimate con-

stant bone-space offsets tpb for all keypoints p. For a

given input frame, for each keypoint, p, a confidence-

Fig. 4 Visualization calibrated positional track targets
(blue) offsets for the CPM Body25 keypoint set w.r.t. the
optical reference skeleton (yellow). Note the offset for both
the surface and the joint keypoints.

weighted multi-view triangulation across all cameras is

performed to obtain a global 3D position estimate, t̂pg:

t̂pg = argmin
tpg

∑
c∈[1,nc]

ρP

(
wc

p

∥∥∥dh(Pctpg)− tcp

∥∥∥2
2

)
. (17)

This is converted to bone-local coordinates using the

ground truth global pose of the bone, Tg
b :

t̂pb = (Tg
b)−1t̂pg (18)

Finally, tpb is taken as the per-axis median of t̂pb over

all input frames, ensuring robustness against outlier de-

tections. Figure 4 illustrates the calibrated offets on our

solving skeleton, for both surface and joint keypoints,

with the calibrated offsets up to 6.5 cm from the joint

centre.

3.4 Implementation details

3.4.1 Input data

Xsens MTw wireless IMUs (Roetenberg et al. (2013))

were used for all our datasets as well as the live demon-

strator system. Each MTw IMU contains gyroscopes,

accelerometers and magnetometers and through inter-

nal onboard sensor fusion outputs an orientation and

acceleration at 60 Hz. The inertial reference frame of

each IMU, Rig is assumed to be consistent between

IMUs and in alignment with the world coordinates through

the global up direction and magnetic north. The IMU-

bone positions tib are specified by manual visual align-

ment and the IMU-bone orientations Rib are calibrated

using the measured orientations with the subject in a
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known pose (the T-pose, facing the direction of a given

axis). To temporally align the IMU and video data an

initial footstamp was performed by the actor, which is

visible in the video and produces a strong peak in ac-

celeration in the IMU data.

The camera intrinsics and extrinsic calibration is

determined using a checker-board chart (after Zhang

(1999)) and for simplicity of integration with the in-

ertial measurements, the global reference frame of the

camera system is chosen to lie on the floor and to align

with the up direction and magnetic north. The number

of input cameras, their resolution and their frame-rate

vary between datasets (between 0.5k and 4k pixels wide

and from 30 to 60 fps ). The CPM detector, however,

operates on relatively low-resolution images (656×368),

and the input is downscaled accordingly.

3.4.2 Live implementation

Here we briefly describe a portable live implementa-

tion of the proposed real-time motion capture approach.

Note that, unless otherwise specified, the same core

implementation and processing parameters are used in

all experiments (live or offline). The live system differs

from the offline results only that the input video frames

are temporally sub-sampled and the detections interpo-

lated online so as to maintain live operation, whereas

for the (recorded) datasets, detection is performed on

all input frames.

The capture and pose solving of one or more sub-

jects is performed in real time on a single commodity

laptop PC (Intel i7 3.6 GHz with 32GB RAM, NVIDIA

GTX 1080 mobile GPU with 8GB RAM) using multi-

threaded C++ code. The laptop is connected to 4 Point-

Grey Grasshopper 3 machine vision cameras (each cap-

turing at 472 × 512, 60 fps), and optionally to 1 or

2 Xsens receivers (with up to 17 Xsens MTw wireless

IMUs for per subject). The solved motion of each char-

acter may be recorded or streamed live to a game engine

environment (e.g . Unity or Unreal Engine) on a sec-

ond laptop, which displays the game environment and

character in VR (see Figure 15 and the supplementary

video).

Because hardware synchronization is not available

between camera and IMU inputs and because the GPU-

accelerated CPM-based detector runs at a lower rate

than our kinematic solver, it is not possible to process

with fixed frame intervals while maintaining live opera-

tion. The system is therefore run asynchronously, with a

fixed delay between output solver time and ‘wall’ time.

Buffers of the 2D keypoint detections and IMU input

are sampled and interpolated according to the current

solve time (linear interpolation is used for the 2D key-

point detections and quaternion interpolation for the

IMU orientations).

To increase the through-put of the CPM-based 2D

keypoint detection, 2 frames of each of the 4 cameras

are packed into a single image for detection (the CPM

detection time is independent of the number of subjects

in the image, see Cao et al. (2017)). The live processing

pipeline is illustrated in Figure 5, showing the main

tasks of multi-camera capture, keypoint detection and

kinematic solving being run in parallel, with the current

solver time delayed by a fixed latency.

Cam 1

Cam 2

Cam 3

Cam 4

Packing

CPM detection

Detection sorting

Kinematic solving

Keypoint interpolation

Output rendering

Latency

Time

Fig. 5 Processing flow for live operation showing 4 camera
capture, packing multiple frames into single images, CPM
detection, detection sorting and interpolation for input into
the kinematic solve (timing not shown to scale). Note that
the cameras are not assumed to be synchronised, and that
the cameras may operate at a higher frame-rate than the
CPM processing achieves, as illustrated here by the alternate
greyed-out frames in the capture sequence.

3.4.3 Timing

On our system, the typical CPM detection time is ap-

prox. 110 ms per image, giving an effective 2D detec-

tion rate of approx. 18 fps (compared to approx. 2.3 fps

with sequential detection of frames). Since the GPU is

only approx. 60% utilized, further increases in detection

frame-rate might be achieved in future work by using

two CPM detectors in parallel.
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The solved kinematic pose is output at approx. 40 fps

with a single subject and approx. 25 fps with two sub-

jects, making it well suited to real-time media produc-

tion and interactive applications. The end-to-end la-

tency of the system is approx. 230 ms.

4 Results and evaluation

The proposed approach is designed to take multi-view

video and IMUs as input. It is flexible in terms of the

number of input cameras and IMUs, degrading grace-

fully as the number of cameras and IMUs is reduced and

still functioning in extreme cases such as using a sin-

gle (monocular) camera with no IMUs or one modality

without the other. Note that in this work, all positional

constraint information is obtained from the multiple-

view video based on per-view CPM as discussed in Sec-

tion 3.3 and no optical markers or visible targets are

used.

We quantitatively evaluate our approach using the

Total Capture dataset (Trumble et al. (2017)), which

features a single subject captured with multi-view video,

IMU and a commercial optical mo-cap system for ground

truth reference motion. To the best of our knowledge,

Total Capture is the only dataset which contains multi-

view video, IMU and optical reference data. For com-

pleteness, we also evaluate our approach on the widely

used Human 3.6M dataset of Ionescu et al. (2014),

which does not contain IMUs input.

In addition to the quantitative evaluation, we per-

form extensive qualitative evaluation on various multi-

view video plus IMU datasets including the single-person

Total Capture Outdoor dataset (Malleson et al. (2017))

and three new multi-person datasets, Ping Pong, Karate

and Outdoor Duo. These were captured with natural,

loose clothing, and, in the case of Outdoor Duo, in un-

constrained outdoor environments. The Ping Pong and

Outdoor Duo datasets will be made available for re-

search use upon publication.

Finally, we show results from our real-time, live im-

plementation, which is portable and runs on a single

laptop PC with 4 machine vision cameras and up to

13 IMUs per subject. The live tracked motion can be

streamed to a game engine environment and displayed

in a virtual reality headset.

4.1 Quantitative evaluation

The Total Capture dataset includes five subjects (S )

performing various motions including range of motion

(ROM ), walking (W ), acting (A), and ‘freestyle’ (FS ).

These sequences vary in complexity and speed from

slow ROM sequences to challenging sequences includ-

ing fast motion and unusual poses such as crouching on

the floor (see Figure 6 and refer to the supplementary

video). The subjects were recorded simultaneously us-

ing 13 Xsens MTw IMUs, 8 HD video cameras and a

commercial infra-red motion capture system consisting

of 16 cameras and a dense set of retro-reflecting mark-

ers worn by the subject. The marker-based input is not

used in the runtime solver and is only used in this work

as a ‘ground truth’ reference for evaluation.

Detailed results with the full input (8 cameras, 13

IMUs) are presented and compared to prior methods in

Table 1, in which the proposed approach performs best

on average with an average global joint position error

of 26.1 mm, and average global joint orientation error

of 7.5 degrees3. Note that for this dataset, the proposed

approach as well as the prior works compared against,

are evaluated across all 21 solved joints in the kine-

matic skeleton (i.e. hip, four spine bones, neck, head,

shoulders, elbows, wrists, uppers legs, knees, ankles and

toe bases). In addition to mean global joint position

and orientation errors, we report standard deviations as

well as robust statistics, i.e. median and median abso-

lute deviation (MAD). Furthermore, we include errors

w.r.t. the position root joint (hips) of the subject, as

is done by Trumble et al. (2017) and with procrustes

alignment, giving an indication of the pose accuracy

independent of errors in root position and orientation.

Figure 6 shows the robustness of our approach to typi-

cal misdetections from the CPM joint detector.

Fig. 6 Ground truth optical skeleton (yellow) and the solved
skeleton (blue) overlaid along with visualizations of the CPM
detections from each view back-projected with a line showing
where each detection is pulling the corresponding track tar-
get. The proposed robust cost function yields a high-quality
pose estimate despite several views containing mis-detections
(e.g. swapped feet). Sequence: Total Capture, S5, FS1.

3 In line with standard practice, the global joint orienta-
tion error is computed as the magnitude of the 3D rotation
required to bring the solved and ground truth joint orienta-
tions into alignment (using the angle-axis norm).
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Table 1 Results for 8 sequences from the TotalCapture dataset (Trumble et al. (2017)), using input from all 8 cameras and 13
IMUs. Mean error in absolute position (mm) and orientation (deg) over all joints and all frames is reported, as per the headings.
Where available, standard deviations are shown in brackets (for the individual sequences, the standard deviation is computed
across bones and frames, for the mean over all sequences (right most column), the standard deviation is calculated across
sequences). Results are shown w.r.t. global coordinates, w.r.t. the root position, and with per-frame procrustes alignment. The
results with procrustes alignment express the error in pose with the global rigid body pose component factored out. On average,
our approach yields substantially lower positional error than previous approaches, while orientation is improved slightly.

Method \ Seq. S1, FS3 S2, FS1 S2, R3 S3, FS1 S3, FS3 S4, FS3 S5, A3 S5, FS1 Mean

Mean (std) pos. error (mm), global

Malleson’17 74.0 53.0 39.0 67.0 64.0 67.0 74.0 70.0 63.5

Proposed 36.1 (21.6) 16.1 (10.7) 12.8 (10.8) 27.1 (21.6) 26.2 (20.8) 40.0 (22.8) 20.9 (13.1) 29.2 (17.5) 26.1 (9.3)

Mean (std) pos. error (mm), w.r.t. root

Trumble’17 94.0 167.0 93.0 136.0 86.0 116.0 140.0 105.0 117.1

Trumble’18 39.5 10.4 21.3 10.6 63.7 87.4 33.6 17.3 35.5

Proposed 31.7 (25.3) 15.7 (11.9) 13.7 (13.2) 25.5 (25.5) 23.4 (23.9) 26.5 (21.4) 19.3 (15.5) 24.4 (20.8) 22.5 (5.9)

Mean (std) pos. error (mm), with procrustes

Proposed 23.1 (16.5) 9.0 (6.4) 10.2 (8.7) 20.8 (18.8) 18.2 (19.6) 18.8 (13.7) 14.3 (8.6) 18.6 (13.2) 16.6 (5.0)

Mean (std) ori. error (deg), global

Malleson’17 11.2 5.1 5.0 8.3 9.3 8.0 7.6 8.2 7.8

Proposed 11.0 (8.3) 4.9 (3.7) 4.5 (4.3) 7.8 (7.3) 8.8 (8.2) 8.1 (5.8) 7.1 (5.8) 7.8 (5.8) 7.5 (2.1)

Mean (std) ori. error (deg), with procrustes

Proposed 10.9 (8.1) 4.6 (3.5) 4.6 (4.2) 7.8 (7.2) 8.8 (8.2) 8.0 (5.7) 7.1 (5.8) 7.7 (5.7) 7.4 (2.1)

4.1.1 Number of cameras and IMUs

It is desirable to have a minimal capture hardware setup

in order to reduce cost as well as actor setup time. We

simulate the effect of reduced capture hardware (sparse

input) by excluding selected cameras and IMUs from

the input. For completeness, the special cases with no

IMUs, no cameras, or a single camera, are included, ef-

fectively evaluating on IMU-only and monocular cam-

era cases. The 13 IMUs in the full set are placed on the

pelvis, sternum, upper and lower limbs, head and feet.

The 6 IMUs in the reduced set are positioned on the

pelvis, lower limbs and head. The full set of cameras

form a ring around the subject and a the subsets used

in the tests are the adjacent cameras starting from the

first camera.

Figure 7 shows the error with 0-8 cameras along

with 0, 6 or 13 IMUs. The results show show reason-

able results can be obtained even with the minimal in-

put configurations, including IMU only and monocular

cases. The best results are obtained by combining IMU

and multiple camera input. Using only 3 cameras is

enough to provide accurate global position, with a more

gradual improvement as further cameras are added. The

sparse set of 6 IMUs provides substantial improvement

in orientation error, while including all 13 IMUs im-

proves the orientation error further. This demonstrates

the flexibility of our approach in trading hardware re-

quirements and set-up time for accuracy. Table 2 shows

a comparison of our approach under the 0 camera, 6

IMU and 1 camera, 13 IMU cases to DIP (Huang et al.

(2018)) and VIP (von Marcard et al. (2018)), respec-

Table 2 Mean joint position and orientation error (with pro-
crustes alignment) for the Total Capture dataset using sparse
input data compared to DIP-online (Huang et al. (2018)) and
VIP (von Marcard et al. (2018)).

Input config. Approach Mean (std) pos.
error (mm)

Mean (std) ori
error (deg.)

0 cam.,
6 MU

DIP-online 59.6 (61.3) 15.8 (13.4)

Proposed 68.6 (55.1) 18.5 (15.9)

1 cam.,
13 IMU

VIP 26.0 12.1

Proposed 19.2 (14.9) 7.7 (6.0)

tively. Our approach yields comparable results on DIP

while outperforming VIP, on the respective sensor con-

figurations. A grid of visual results for two sequences

across the camera/IMU sweep is shown in Figure 8.

4.1.2 Cost function ablation study

In order to assess the effectiveness of each term in the

cost function, Equation 2, we evaluate the solver with

selected terms switched off. These results are summa-

rized in Table 3, which shows the mean and standard

deviation in solved joint position and orientation error

with specific terms omitted from Equation 2, relative

to the error using the full cost function. This shows the

effectiveness of fusing input from multiple modalities to

obtain high quality pose estimates.

From the IMU input, the orientation term is effec-

tive in resolving the bone orientations, which are not

fully defined by the joint locations. In addition the ori-

entation term reduces the error in position, helping to

mitigate jitter and mis-detections present in the CPM

keypoints. On the other hand, the acceleration term
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Fig. 7 Position and orientation error over 8 Total Capture sequences with different sensor configurations, with 0-8 cameras
and 0, 6 and 13 IMUs. The dashed lines show mean and standard deviation in abosulute position and orientation errors over
all frames and bones, while the solid lines show the corresponding median and median absolute deviation (MAD). Results are
measured w.r.t. global coordinates as well as w.r.t. the root position and with procrustes alignment. Reasonable results are
achieved even with minimal input and high quality results are obtained with as few as three cameras.

(a) S1, FS1

(b) S5, FS1

Fig. 8 Visualization of results of the proposed approach for
Total Capture S1, FS1 (a) and the more challenging S5, FS1
(b) over a range of input configurations. Note how the quality
of the solved pose degrades gracefully as the input is made
more sparse.

does not improve performance in the proposed formu-

lation. With the optimized parameter weightings used,

acceleration is weighted relatively low. As shown in Fig-

ure 9, increasing the acceleration weighting by an order

of magnitude, reduces the error in acceleration slightly,

but ultimately increases the error in position. While the

fusion of acceleration with positional information pre-

vents long-term runaway drift, local overshooting oc-

curs resulting in increased positional error and ‘swim-

ming’ artefacts in the solved motion.

The position term is required in order to lock down

the global position of the subject in 3D, thus an arbi-

trarily high global position error results without it. The

local positional error as well as the orientation error are

reduced by the position term.

The prior terms are effective in reducing the output

error by encouraging plausible poses in the presence of

noise in the input data and otherwise unconstrained

degrees of freedom in the skeletal pose. Inclusion of the

prior projection more than halves the error in position

and orientation, while the prior deviation term results

in a small improvement.

While the floor penetration term can improve the

qualitative appearance of the solved motion (see Fig-

ure 10) it does not significantly improve the numerical

performance. Although it prevents the feet being recon-

structed below the floor, the term does not necessarily

cause the limbs to be reconstructed closer to their cor-

rect positions.

Finally, the last five rows of table show the effects

of using improved input keypoints. Whereas Malleson
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Fig. 9 Plots of the z-axis component of the root position,
and corresponding absolute error in position, velocity and
acceleration with the default low weighting of the acceleration
term, λA = 1×10−3 (NA), and with an increased weighting,
λA = 1× 10−2 (WA). Note that while increasing the weight
of the acceleration term results in a decrease in the mean
error in acceleration, it causes increases in the mean errors
in velocity and position, with the solved position exhibiting
overshooting artefacts. Sequence: Total Capture, S1, FS1.

et al. (2017) use a subset of 12 keypoints from the

‘MPI15’ detection model of OpenPose, the proposed ap-

proach uses all 25 keypoints available with the ‘Body25’

detection model of OpenPose (see Section 3.3) and fur-

thermore applies calibrated offsets to the targets (Sec-

tion 3.3.2). In all cases, the mean error in solved joint

position is improved by using the calibrated offsets.

Note that the same calibrated offsets are used for all

subjects. (While the subjects in the Total Capture data-

set range in height from 152 and 180 cm, scaling these

offsets according to subject height was found not to sig-

nificantly improve the results.) On the 12 keypoint sub-

set, the body ‘Body25’ model provides a marginal im-

provement in accuracy, however a significant improve-

ment is obtained by using all 25 keypoints with the

‘Body25’ detection model.

4.1.3 Human 3.6M dataset

For completeness, we further test the proposed approach

on the Human 3.6M dataset, which contains only four

Table 3 Mean and standard deviations in solved joint posi-
tion and orientation error with specific terms omitted, rela-
tive to the error using the full cost function, Equation 2. The
last five rows show the relative error when using different
variations of input keypoints: the 12 keypoint subset (K12)
from the ‘MPI15’ detection model (M15), the ‘Body25’ model
without calibrated offsets (B25), and using the 12 keypoint
subset of the ‘Body25’ detection model (B25/K12). (Results
averaged over S1 FS1 and S2 FS1 of Total Capture dataset
with 8 cameras, 13 IMUs).

Relative mean (std)
pos. error

Relative mean (std)
ori. error

Cost
terms

Global Local
(pro-

crustes)

Global Local
(pro-

crustes)

Full
(Eq. 2)

1.00
(1.00)

1.00
(1.00)

1.00
(1.00)

1.00
(1.00)

IMU 1.14
(1.20)

1.33
(1.35)

1.57
(1.34)

1.59
(1.39)

ER 1.17
(1.25)

1.37
(1.40)

1.60
(1.36)

1.61
(1.41)

EA 0.99
(0.98)

0.98
(0.99)

1.00
(1.00)

1.00
(1.00)

EP 49.0
(36.5)

1.33
(1.44)

1.09
(1.08)

1.11
(1.17)

Prior 1.86
(2.00)

2.55
(2.58)

3.14
(5.91)

3.32
(5.99)

EPP 1.33
(1.37)

2.50
(2.77)

2.25
(2.61)

2.48
(3.15)

EPD 1.02
(1.04)

1.06
(1.11)

1.16
(1.47)

1.18
(1.49)

EFP 1.00
(1.00)

1.00
(1.00)

1.00
(1.00)

1.00
(0.99)

M15/K12
no calib.

1.29
(1.15)

1.23
(1.17)

1.09
(1.06)

1.07
(1.06)

M15/K12
calib.

1.18
(1.14)

1.10
(1.19)

1.04
(1.02)

1.03
(1.02)

B25/K25
no calib.

1.22
(1.14)

1.24
(1.11)

1.06
(1.02)

1.07
(1.02)

B25/K12
no calib.

1.23
(1.12)

1.09
(1.07)

1.05
(1.02)

1.03
(1.02)

B25/K12
calib.

1.17
(1.10)

1.04
(1.10)

1.02
(1.00)

1.01
(1.00)

cameras and no IMU input. We follow the evaluation

procedure used in prior works (e.g . Tome et al. (2017))

reporting the mean joint position error across 17 joints

(which correspond to those used on the Total Capture

dataset, but without the four intermediate spine joints)

and show results for each activity averaged over all

takes of subjects S9 and S11, using global position for

the multi-camera case and per-frame procrustes aligned

position for the monocular case. As shown in Table 4,

the proposed approach yields state-of-the-art perfor-

mance using 4 camera input, while in the case of monoc-

ular input, the proposed approach is outperformed by

specialised monocular pose estimation approaches.
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We note that a simplistic baseline approach ‘Tri-

CPM’ reported by Trumble et al. (2017), which consists

of explicit 3D triangulation of OpenPose 2D keypoint

detections across all camera views, performs poorly com-

pared to the proposed approach, which is able to make

better use of such 2D detections through its use of a

robust kinematic solve.

Note that we do not perform any re-training of our

PCA pose prior or changing of cost function term weight-

ings for these experiments, the pose prior created from

the Total Capture dataset is used throughout all our ex-

periments. The bone offsets, however, are re-calibrated

for this dataset, as we found significant differences be-

tween our ground truth skeleton and that of Human

3.6M (refer to Section 3.3.2). Figure 10 shows our re-

sults on the ‘Directions’ and ‘Sitting Down’ sequences.

The floor penetration term can improve the perceptual

quality of the results since visually obvious pose er-

rors in the form of the legs being reconstructed under

the floor are eliminated, however, since error within the

floor plane is still possible, the numerical error is not

necessarily improved by the term (on this dataset, re-

sults are marginally worse by approx. 2% when the floor

penetration term is disabled).

(a) S9, Directions (4 cameras, no IMUs)

(b) S11, Sitting Down (monocular, no IMUs)

Fig. 10 Results on the Human 3.6M dataset. (a) High-
quality results with 4 camera input. (b) Monocular solve with-
out (left) and with (right) the floor penetration term enabled,
the latter avoiding objectionable floor penetration artifacts.

4.2 Qualitative evaluation

4.2.1 Single subject

The Total Capture Outdoor dataset (Malleson et al.

(2017)) was recorded outdoors in challenging uncon-

trolled conditions with a moving background and vary-

ing illumination. A set of 6 cameras were placed in a

120◦ arc around the subject and 13 Xsens IMUs. No

ground truth data is available for this dataset. Figure 11

shows the 3D solved motion overlaid on each input view.

The background models for this and the other outdoor

sequences are generated from photogrammetry for vi-

sualization purposes. This background geometry is not

used in the solver. Additional sequences for this dataset

are presented in the supplementary video.

Fig. 11 Results on the single-person outdoor dataset Total
Capture Outdoor, Props.

4.2.2 Multiple subjects

The multi-person capability of the proposed approach

was tested on two indoor datasets Karate (Figure 12)

and Ping Pong (Figure 13) as well as on a new out-

door dataset Outdoor Duo, which will be released for re-

search use along with this paper. Details of the datasets

are provided in Table 5.

These sequences are diverse in terms of environment

and activities performed and include dynamic back-

grounds, fast motion, close interaction, occlusion, and

props. Results for four of the Outdoor Duo sequences

are shown in Figure 14. Finally, results from the live im-

plementation with two subjects are shown in Figure 15.

Refer to the supplementary video for the full sequences

and further visualizations.

Due to the ambiguity and imprecision of triangu-

lation with approximate keypoints, the proposed de-

tection sorting approach occasionally misassigns detec-

tions to subjects resulting in tracking failure. An exam-

ple of such a failure case is shown in the supplementary
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Table 4 Evaluation of mean joint position error (mm) for all sequences for test subjects S9 and S11 of the Human 3.6M
dataset (Ionescu et al. (2014)), left: 4 cameras, video input only, right: monocular video only. Note that IMU input is not
available for this dataset. On average, The proposed approach out-performs previous approaches when using multi-camera
input.

4 cameras (global) Monocular (local - procrustes)

Seq.
Approach

Ionescu Tri-CPM Tekin Tome’17 Trum’17 Trum’18 Tome’18 Proposed Lin Martinez Tome’18 Proposed

Directions 132.7 125.0 85.0 65.0 92.7 41.7 43.3 38.5 58.0 39.5 38.2 65.5

Discussion 183.6 111.4 108.8 73.5 85.9 43.2 49.6 42.1 68.3 43.2 40.2 69.9

Eating 132.4 101.9 84.4 76.8 72.3 52.9 42.0 43.5 63.3 46.4 38.8 94.8

Greeting 164.4 142.2 98.9 86.4 93.2 70.0 48.8 42.1 65.8 47.0 41.7 63.2

Phoning 162.1 125.4 119.4 86.3 86.2 64.9 51.1 56.2 75.3 51.0 44.5 109.8

Photo 205.9 147.6 95.7 110.7 101.2 83.0 64.3 50.2 93.1 56.0 54.9 92.5

Posing 150.6 109.1 98.5 68.9 75.1 57.3 40.3 41.5 61.2 41.4 34.8 72.3

Purchases 171.3 133.1 93.8 74.8 78.0 63.5 43.3 42.5 65.7 40.6 35.0 61.7

Sitting 151.6 135.7 73.8 110.2 83.5 61.0 66.0 60.8 98.7 56.5 52.9 105.6

Sit. Down 243.0 142.1 170.4 173.9 94.8 95.0 95.2 77.7 127.7 69.4 75.7 150.1

Smoking 162.1 116.8 85.1 85.0 85.8 70.0 50.2 54.8 70.4 49.2 43.3 94.7

Waiting 170.7 128.9 116.9 85.8 82.0 62.3 52.2 46.9 68.2 45.0 46.3 78.1

Walking 96.6 105.2 62.1 71.4 94.9 53.7 51.1 50.0 50.6 49.5 44.7 74.6

Walk. Dog 177.1 111.2 113.7 86.3 114.6 66.2 43.9 53.6 73.0 38.0 35.7 71.4

Walk. Together 127.9 124.2 94.8 73.1 79.7 52.4 45.3 46.9 57.7 43.1 37.5 71.5

Mean 162.1 124.0 100.1 88.5 88.0 62.5 52.8 49.8 73.1 47.7 44.6 85.0

Table 5 Details of the recorded multi-person datasets. For
all datasets, Xsens MTw wireless IMUs are used. For the
Karate dataset, the cameras are hardware synchronised; for
the Ping Pong and Outdoor Duo datasets, the cameras are
approximately synchronized (to the nearest frame) using a
clapper board.

Dataset Num. seqs. /
subjects

Num.
cams.

Cam. config. IMUs
per

subject

Karate 12× 1 sub., 3× 2
sub.

8 720p @ 30fps, sync, 360◦

ring
13

Ping Pong 5× 2 sub., 1× 4
sub.

6 720p @ 60fps, approx.
sync, 120◦ arc

17

Outdoor Duo 17× 2 sub. 7 720p @ 60fps, approx.
sync, 120◦ arc

13

Fig. 12 Results for four frames of the two-person sequence
Karate, Action 13 (8 cameras, 2×13 IMUs per subject). Inset
are top view visualizations of the subject sorter showing 3D
canditates and labelled sorted subjects.

video, in which the subjects are swapped following a

(a) 2 subject (P5) (b) 4 subject (P4)

Fig. 13 Results on the Ping Pong dataset, sequences P4 and
P5 (6 cameras, 0 IMUs).

DownHiking1 DownPicnic

ForestFitness3 ForestGame2

Fig. 14 Results for four sequence of the two-person outdoor
dataset Outdoor Duo (7 cameras, 2× 13 IMUs).

close interaction. Suggestions for improving the robust-

ness of the sorter are presented in the conclusion.
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4 Cam. live setup

VR display Kinematic solving

Capture/detection Sorting

Fig. 15 Light-weight live implementation of the proposed
approach with 4 camera capture and solving running on a
single laptop PC (capture area approx. 3× 3 m). The solved
motion is streamed live to a game engine environment on a
second laptop and displayed on a virtual reality headset.

5 Conclusion

The proposed approach is able to obtain high-quality

pose of one or more subjects in real-time. It is flexible in

terms of camera and IMU hardware requirements, de-

grading gracefully as the number of cameras and IMUs

is reduced. By combining multi-view video and IMU in-

put, it is able to recover the full 6-DoF pose, without

drift in global position. The system can operate both in

constrained studio environments and in unconstrained

setups such as outdoor scenes with varying illumina-

tion, moving backgrounds and occlusion. The detection

sorter is able to assign 2D detections to their corre-

sponding tracked subjects. Missing or outlier keypoint

detections and even short periods of complete occlusion

can be handled due to the robust cost function incorpo-

rating multi-modal input and a PCA-based statistical

pose prior.

A limitation of our approach is that the available ac-

celeration input from the IMUs is not being effectively

utilized. Our experiments show no benefit to including

the acceleration term. Using acceleration directly in a

frame-by-frame solve proves problematic due to inte-

gration error, as is noted by von Marcard et al. (2017).

Future work could investigate extending the proposed

approach to solve a small window of frames simultane-

ously thus more robustly incorporating the acceleration

information, maintaining online real-time performance

at the expense of a small additional latency as is done

in ‘deep inertial poser’ (Huang et al. (2018)). Another

avenue for further work is improving the robustness of

the detection sorter in challenging scenarios where the

subjects are very close together, or moving very fast,

for example by using cues from image appearance in

the region of the detected keypoints. Finally, we note

that to the best of our knowledge, no dataset is cur-

rently available featuring multiple-view video, IMU and

optical ground truth capture of multiple subjects in un-

controlled conditions. Such a dataset, while challenging

to acquire, would allow for detailed quantitative evalu-

ation of multi-person motion capture in the wild and is

therefore an interesting avenue of future investigation.

Acknowledgements This work was supported by the In-
novate UK Total Capture project (grant 102685) and the
European Union Horizon 2020 Visual Media project (grant
687800). We wish to thank Marco Volino, Maggie Kosek, Joao
Regateiro, Lewis Bridgemam, Hansung Kim and Matt Shere
for their help with data capture and Andrew Gilbert for his
help with additional evaluation.

References

Agarwal S, Mierle K, Others (2017) Ceres solver. http://

ceres-solver.org

Alp Gler R, Neverova N, Kokkinos I (2018) Densepose: Dense
human pose estimation in the wild. In: Conference on
Computer Vision and Pattern Recognition (CVPR)

Andrews S, Huerta I, Komura T, Sigal L, Mitchell K (2016)
Real-time Physics-based Motion Capture with Sparse
Sensors. In: Proceedings of the 13th European Confer-
ence on Visual Media Production (CVMP 2016), DOI
10.1145/2998559.2998564

Cao Z, Simon T, Wei SE, Sheikh Y (2017) Realtime multi-
person 2D pose estimation using part affinity fields. In:
Conference on Computer Vision and Pattern Recognition
(CVPR)

Captury T (2017) The Captury Markerless Motion Capture
Technology. http://thecaptury.com/

Elhayek A, De Aguiar E, Jain A, Tompson J, Pishchulin L,
Andriluka M, Bregler C, Schiele B, Theobalt C (2015) Ef-
ficient ConvNet-based marker-less motion capture in gen-
eral scenes with a low number of cameras. In: Conference
on Computer Vision and Pattern Recognition (CVPR),
pp 3810–3818, DOI 10.1109/CVPR.2015.7299005

Helten T, Muller M, Seidel HP, Theobalt C (2013) Real-time
body tracking with one depth camera and inertial sensors.
In: Proceedings of the IEEE International Conference on
Computer Vision (ICCV), pp 1105–1112

Hochreiter S, Schmidhuber J (1997) Long short-term mem-
ory. In: Neural computation, MIT Press, vol 9, pp 1735–
1780

Huang Y, Kaufmann M, Aksan E, Black MJ, Hilliges O, Pons-
Moll G (2018) Deep inertial poser: Learning to recon-
struct human pose from sparse inertial measurements in
real time. ACM Transactions on Graphics, (Proc SIG-
GRAPH Asia) 37:185:1–185:15, two first authors con-
tributed equally

Ichim AE, Tombari F (2016) Semantic parametric body shape
estimation from noisy depth sequences. Robotics and
Autonomous Systems 75:539–549, DOI 10.1016/j.robot.
2015.09.029

IKinema (2017) IKinema Orion. https://ikinema.com/orion
Ionescu C, Papava D, Olaru V, Sminchisescu C (2014) Hu-

man3.6M: Large Scale Datasets and Predictive Methods
for 3D Human Sensing in Natural Environments. IEEE



18 Charles Malleson et al.

Transactions on Pattern Analysis and Machine Intelli-
gence 36(7):1325–1339

Joo H, Simon T, Sheikh Y (2018) Total capture: A 3d defor-
mation model for tracking faces, hands, and bodies. In:
Conference on Computer Vision and Pattern Recognition
(CVPR)

Li S, Zhang W, Chan AB (2017) Maximum-Margin Struc-
tured Learning with Deep Networks for 3D Human Pose
Estimation. In: International Conference on Computer
Vision (ICCV)

Lin M, Lin L, Liang X, Wang K, Cheng H (2017) Recurrent
3D Pose Sequence Machines. In: Conference on Computer
Vision and Pattern Recognition (CVPR)

Loper M, Mahmood N, Romero J, Pons-Moll G, Black MJ
(2015) SMPL: A skinned multi-person linear model. ACM
Trans Graphics (Proc SIGGRAPH Asia) 34(6):248:1–
248:16

Malleson C, Volino M, Gilbert A, Trumble M, Collomosse J,
Hilton A (2017) Real-time full-body motion capture from
video and imus. In: 2017 Fifth International Conference
on 3D Vision (3DV)

von Marcard T, Rosenhahn B, Black M, Pons-Moll G (2017)
Sparse Inertial Poser: Automatic 3D Human Pose Esti-
mation from Sparse IMUs. In: Eurographics 2017, vol 36

von Marcard T, Henschel R, Black M, Rosenhahn B, Pons-
Moll G (2018) Recovering accurate 3d human pose in the
wild using imus and a moving camera. In: European Con-
ference on Computer Vision (ECCV)

Martinez J, Hossain R, Romero J, Little JJ (2017) A Simple
Yet Effective Baseline for 3d Human Pose Estimation.
2017 IEEE International Conference on Computer Vision
(ICCV) pp 2659–2668

Mehta D, Sridhar S, Sotnychenko O, Rhodin H, Shafiei M,
Seidel HP, Xu W, Casas D, Theobalt C (2017) VNect:
Real-time 3D human pose estimation with a single RGB
camera. In: ACM Transactions on Graphics, vol 36, DOI
10.1145/3072959.3073596

Mehta D, Sotnychenko O, Mueller F, Xu W, Sridhar S, Pons-
Moll G, Theobalt C (2018) Single-shot multi-person 3d
pose estimation from monocular rgb. In: International
Conference on 3D Vision (3DV)

OptiTrack (2017) OptiTrack Motive. http://www.optitrack.
com

PerceptionNeuron (2017) Perception Neuron. http://www.

neuronmocap.com

Rhodin H, Richardt C, Casas D, Insafutdinov E, Shafiei
M, Seidel HP, Schiele B, Theobalt C (2016a) EgoCap:
Egocentric Marker-less Motion Capture with Two Fish-
eye Cameras. ACM Transaction on Graphics (TOG) 35-
6:162:1—-162:11

Rhodin H, Robertini N, Casas D, Richardt C, Seidel Hp,
Theobalt C (2016b) General Automatic Human Shape
and Motion Capture Using Volumetric Contour Cues. In:
European Conference on Computer Vision (ECCV, pp
509–526, DOI 10.1007/978-3-319-46448-0

Roetenberg D, Luinge H, Slycke P (2013) Xsens MVN : Full
6DOF Human Motion Tracking Using Miniature Inertial
Sensors. Technical report pp 1–7, DOI 10.1.1.569.9604

Rosenhahn B, Schmaltz C, Brox T, Weickert J, Seidel HP
(2008) Staying Well Grounded in Markerless Motion Cap-
ture. In: Pattern Recognition DAGM, pp 385–395, DOI
10.1007/978-3-540-69321-5 39

Tekin B, Márquez-Neila P, Salzmann M, Fua P (2016) Fusing
2D Uncertainty and 3D Cues for Monocular Body Pose
Estimation. CoRR abs/1611.0, 1611.05708

Tome D, Russell C, Agapito L (2017) Lifting from the deep:
Convolutional 3D pose estimation from a single image.
Conference on Computer Vision and Pattern Recognition
(CVPR)

Tome D, Toso M, Agapito L, Russell C (2018) Rethinking
pose in 3d: Multi-stage refinement and recovery for mark-
erless motion capture. In: 2018 International Conference
on 3D Vision (3DV), pp 474–483, DOI 10.1109/3DV.2018.
00061

Trumble M, Gilbert A, Hilton A, Collomosse J (2016) Deep
convolutional networks for marker-less human pose es-
timation from multiple views. In: Proceedings of the
13th European Conference on Visual Media Production
(CVMP 2016)

Trumble M, Gilbert A, Malleson C, Hilton A, Collomosse J
(2017) Total Capture: 3D Human Pose Estimation Fusing
Video and Inertial Sensors. In: British Machine Vision
Conference (BMVC)

Trumble M, Gilbert A, Hilton A, Collomosse J (2018) Deep
Autoencoder for Combined Human Pose Estimation and
Body Model Upscaling. In: European Conference on Com-
puter Vision (ECCV), DOI 10.1016/j.scitotenv.2003.11.
003, 1807.01511

Vicon (2017) Vicon Blade. http://www.vicon.com
Von Marcard T, Pons-Moll G, Rosenhahn B (2016) Human

Pose Estimation from Video and IMUs. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence
38(8):1533–1547, DOI 10.1109/TPAMI.2016.2522398

Wei SE, Ramakrishna V, Kanade T, Sheikh Y (2016) Convo-
lutional Pose Machines. IEEE Conference on Computer
Vision and Pattern Recognition pp 4724–4732, DOI
10.1109/CVPR.2016.511, 1602.00134

Wei X, Zhang P, Chai J (2012) Accurate realtime full-
body motion capture using a single depth camera. ACM
Transactions on Graphics 31(6):1, DOI 10.1145/2366145.
2366207

Zanfir A, Marinoiu E, Sminchisescu C (2018) Monocular 3D
Pose and Shape Estimation of Multiple People in Natural
Scenes: The Importance of Multiple Scene Constraints.
In: Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp 2148–2157, DOI 10.1109/CVPR.2018.
00229

Zhang Z (1999) Flexible camera calibration by viewing a
plane from unknown orientations. In: International Con-
ference on Computer Vision (ICCV), vol 00, pp 0–7

Zhao M, Li T, Alsheikh MA, Tian Y, Zhao H, Torralba A,
Katabi D (2018) Through-Wall Human Pose Estimation
Using Radio Signals. In: Conference on Computer Vision
and Pattern Recognition (CVPR), pp 7356–7365, DOI
10.1109/CVPR.2018.00768, arXiv:1011.1669v3

Zhou X, Zhu M, Leonardos S, Derpanis KG, Daniilidis K
(2016) Sparseness meets deepness: 3D human pose esti-
mation from monocular video. Conference on Computer
Vision and Pattern Recognition (CVPR) pp 4966–4975


