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Hybrid modelling of non-rigid scenes from
RGBD cameras - Supplementary Material
Charles Malleson Member, IEEE, Jean-Yves Guillemaut Member, IEEE, and Adrian Hilton

I. GENERATION OF INPUT SURFEL GRAPH FROM RGBD
SEQUENCES

The optical flow-based point tracker of Sundaram et al.
[15] is used to produce a set of 2D tracks p̂p(t) from an
input RGB image sequence C(t). This tracker is based on
concatenation of frame-to-frame optical flow fields, subject
to various consistency checks. The optical flow method uses
frame-to-frame feature matches in order to handle large dis-
placements. Likely invalid tracks are filtered firstly by doing
a forward-backward consistency check to detect occluded
regions, secondly by removing points from unstructured image
regions, and thirdly by removing tracks on motion boundaries.
New tracks are introduced to fill unoccupied areas resulting
from disocclusion or appearance of new surface regions, thus
maintaining tracking density.

For efficient computation in the subsequent piecewise rigid
segmentation and modelling stage, the dense flow field is sub-
sampled (Fig. 1). In the experiments, decimation factors of
4 and 8 were used for the Kinect v1 (VGA resolution) and
Kinect v2 (HD resolution) sequences, respectively.

A. Conversion to 3D and connectivity estimation

The 2D point tracks are converted to a set of 3D surfels
P = {pp(t)}, indexed by p. The 3D positions pp(t) are
obtained by back-projecting the 2D point track p̂p(t) using
the input depth maps D(t). Filtration of the point tracks is
then performed, removing any points which are within a band
of a depth edge, as these are liable to switch between local
foreground and background depths, and are thus unreliable.
For the experiments, a band of 4 pixels was found to be
suitable.

The connectivity matrix E is then established. On the
first frame, edges are added for all visible surfels. For all
subsequent frames edges are added for all surfels which
became visible for the first time in that frame.

The connectivity is estimated using k-nearest neighbours.
Both 2D (image plane) and 3D nearest neighbours were
considered. Because the sampling of the input point tracks
is roughly uniform in the horizontal and vertical directions in
the image plane, 2D neighbourhoods tend to produce edges
in all directions. If 3D neighbourhoods are used, however, on
obliquely viewed surfaces, all the edges produced tend to lie
in one direction according to the surface orientation and the

The authors are with The Centre for Vision, Speech and Signal Processing,
University of Surrey, GU2 7XH, United Kingdom: e-mail: {charles.malleson,
j.guillemaut, a.hilton} @surrey.ac.uk.

Copyright c©2018 IEEE. Personal use of this material is permitted. How-
ever, permission to use this material for any other purposes must be obtained
from the IEEE by sending an email to pubs-permissions@ieee.org

resulting graph may not be well connected. For this reason
the 2D approach was chosen. The putative edge candidates
established in 2D may straddle depth discontinuities (i.e.
connect two separate surface regions), therefore edges are only
added if their projection into the depth map does not cross any
depth discontinuities (Fig. 2).

An edge stretch test is then performed in 3D. Edges are
removed if the ratio of their maximum to minimum length
over the sequence is above a threshold (5.0 was used in all
experiments). This disconnects most regions which should
not be connected (two surfaces that touch in part of the
sequence), while maintaining connections deforming surfaces
which stretch moderately. The 4 nearest valid neighbours are
kept. For sequences which feature changes in topology, this
helps to produce surfel graphs with topology that more closely
matches the true underlying topology of the scene (i.e. with
surface regions separated part of the time not being connected
in the surfel graph), but does not guarantee that the surfel
graph will be free of errors in topology all cases.

Finally, very short tracks (with fewer than 15 frames) are
removed from the surfel graph, as these tend not to have a
useful contribution to the final model, but are liable to cause
artifacts due to incorrect part assignment and connectivity,
by virtue of the limited period over which their motion is
observed.

II. CONFIGURATION OF VOXEL GRIDS

The following subsections describe the procedure for config-
uring the volumetric grids for the part and composite models,
respectively.

A. Part voxel grids
For each part model m ∈ M, the set of its intrinsic

points {rmp ∈ Pm} are used to configure the part’s voxel
grid Gm. While the exact sizing and initial positioning of
these grids is not critical, for efficiency it is desirable to have
their 3D bounding boxes sized and posed so as to enclose
Pm with close to the minimal volume. The following simple
approximate method is used.

The centroid of {rmp ∈ Pm} is used to define the part’s
local origin. The eigenvectors of the covariance matrix of these
points, taken in descending order, define putative directions for
the part’s local x, y, and z axes, in order. The x and y axes
are then refined by rotating them about the local z axis such
that the bounding box volume is minimized.

The size of the voxel grid is then set such that it encloses
all the points, with a small buffer added at each edge so that
an iso-surface can be reliably extracted even for points near
the minimal boundaries.
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Fig. 1. Four frames of the Paris sequence tracked using the optical flow-based point tracking of Sundaram et al. [15]. The colour of the tracks indicates
their age (linear scale 0 150 frames). Note the newly introduced tracks in the un-occluded regions, and the absence of tracks on the background wall
and table, which lack the image structure needed for reliable flow estimation.

Fig. 2. Adding of surfel graph edges (green) using k-nearest neighbours
in 2D from point tracks (white). Edges which straddle depth discontinuities
are discarded (red). Left: First frame (edges added for all tracks). Right:
Subsequent frame (edges only added for newly visible tracks).

B. Composite voxel grid

The size and pose of the composite voxel grid Gc are deter-
mined as described above, but using the mean and covariance
matrix eigenvectors of the set of all part grid corner points (as
posed at the reference frame tcr).

III. ADDITIONAL RESULTS

A. Kinect v1

The Cat sequence, shown in Fig. 3, features low-textured
regions and high image noise; as a result, drift is present in
the optical flow-based tracking, which results in multiple parts
being used to represent the background. Nevertheless, good
quality segmentations and reasonable tracks of the dynamic
elements are obtained. Fig. 4 shows the results of the proposed
hybrid reconstruction on the piecewise rigid Rabbit and Deer
scene.

Fig. 5 shows results for the Turning sequence with and
without the piecewise surfel graph model concatenation and
re-iteration (Section IV-C of the main paper) being performed.
Note that the piecewise surfel graph is more compact and
the volumetric processing results are more complete when
using the model combination stage. To further motivate the
the approach, results on the Globe sequence with and without
the piecewise surfel graph model concatenation are shown in
the supplementary video.

B. Kinect v2

Fig. 6 shows results for the Shirt and Sitting sequences. The
piecewise surfel graph modelling and subsequent volumetric
processing work as intended, resulting in a seamless non-rigid

(a) Input RGB

(b) Piecewise surfel graph reconstruction

(c) Composite volumetric reconstruction

(d) Residual depth, scale: −20 20mm.

(e) Modelling categories
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(f) Top: Proportion of image pixels in each modelling category (1-7, see
Table 1 in the paper) Bottom: RMS error in consistent (category 4) regions.

Fig. 3. Hybrid processing of the Cat sequence.
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(a) Input (b) Surfel graph

(c) Piecewise surfel
graph model

(d) Composite mesh model

Fig. 4. Hybrid processing of Rabbit and Deer sequence.

(a) Input RGB

(b) Piecewise surfel graph reconstruction

(c) Composite volumetric reconstruction

(d) Residual depth, scale: −20 20mm.

(e) Modelling categories

Fig. 5. Hybrid processing of Turning sequence, without (top rows of (b-
e)), and with (bottom rows of (b-e)) the part concatenation and re-iteration
stage of the piecewise surfel graph modelling. Note the improved temporal
completeness of the output when using the piecewise surfel graph model
concatenation.

(a) Input RGB

(b) Piecewise surfel graph reconstruction

(c) Composite volumetric reconstruction

(d) Residual depth, scale: −20 20mm.

(e) Modelling categories
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(f) Top: Proportion of image pixels in each modelling category (1-7, see Table I
in the main paper) Bottom: RMS error in consistent (category 4) regions.

Fig. 6. Hybrid processing of the Shirt (left) and Sitting (right) sequences.

surface reconstruction for the subject while simultaneously
modelling the background.

The Entrance scene shown in Fig. 7, was captured with a
Kinect v21 as part of the SCENE project 2, which investigated
the use of RGB plus depth capture for film production.
This sequence is challenging due to significant changes in
visibility and limited texture for point tracking, especially for
the background (Fig. 7(c)). The opening door is reconstructed
correctly despite limited point tracks being available (left hand
frame). The static background is almost fully reconstructed,
but not as a single part, due to the limited number of, and noise
in, the point tracks. Both actors are reasonably well segmented
and modelled.

We further test our approach on sequences from the Uni-
versity of Tsinghua dynamic RGBD dataset [31], allowing
comparison of the reconstructions with those generated by
Guo et al. [31]. Note that the results from our method are
not directly comparable to Guo et al. , since Guo et al.
use a pre-scanned template of the foreground shape which
is deformed using only depth input, whereas we reconstruct
the entire scene from scratch without using any pre-scanned

1The pre-release version of the Kinect v2 used had issues with synchro-
nization between RGB and depth streams. The best constant offset was used
to approximately align the RGB and depth streams after recording, but several
frames in the sequence remain poorly synchronised.

2EU Project SCENE www.3d-scene.eu
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(a) Input RGB

(b) Input depth

(c) Raw surfel graph

(d) Piecewise surfel graph reconstruction

(e) Piecewise volumetric reconstruction

(f) Composite volumetric reconstruction

Fig. 7. Hybrid processing of the Entrance sequence featuring a background
set with an opening door as well as two dynamic actors.

templates and use the colour images from the input as well
as the depth. Results for the Pillow1 and Pillow2 sequences
are shown in Figs 8 and 9. The results on the Pillow1
sequence demonstrate the handling changes in topology in the
input sequence. The stretched edge removal and output mesh
filtering in our approach mitigate the severe artifacts caused
by the subject’s arms being joined to the pillow in the output
model. Some less severe artifacts are, however, still present in
the form of holes in the surfaces where they were connected.
Note that, for this sequence, it would be possible to mitigate
topology problems in the output by (e.g. manually) selecting
a suitable reference frame, tcr, where the arm and pillow are
not in contact with one another. Future work could investigate
methods for improved handling of changing topology within
our proposed framework.

C. Effect of segmentation regularization weighting

Varying the parameters of λs, and MDLm controls the
weighting of the segmentation regularization (smoothness and
number of models used). As the weightings are increased,
fewer parts are used, resulting in smaller deforming regions be-
ing combined and modelled as single parts. Fig. 10 shows the
segmentation and modelling results for the Pillow1 sequence
over a range of regularization weightings producing between
2 and 72 parts. This illustrates that when the regularization
is weighted too highly, there are not enough parts to properly
represent the non-rigid scene, an under-segmentation causing
severe artifacts in the output shape and motion (Fig. 10(d)).

(a) Input

(b) Results without edge stretch test and mesh cleanup

(c) Results with edge stretch test and mesh cleanup

(d) Results of Guo et al. [31] (using a template shape)

Fig. 8. Results on the Pillow1 sequence showing piecewise surfel graph and
composite mesh results without (b) and with (c) stretched edge removal/mesh
filtering. Note that the stretched edge removal and filtering of the composite
mesh enables handling of the change in topology that occurs when the pillow
is dropped. A comparison with Guo et al. [31] is shown in (d).

On the other hand, if too little weight is placed on the reg-
ularization terms, an over-segmentation occurs, which results
in redundant models, particularly in the background. This can
result in the output model being less complete (Fig. 10(a)).
At intermediate values (e.g. Fig. 10(b)), the compactness of
the model and its modelling fidelity are balanced, leading to a
compact model that accurately represents the shape and motion
in the scene.

D. Evaluation using RGBD scene flow for point tracking

The point tracks used in the main experiments are obtained
by lifting 2D optical flow-based tracks from Sundaram et al.
[15] to 3D using the depth maps (Section I). An alternative to
this would be to obtain 3D point tracks from an RGBD scene
flow approach.

In additional experiments shown in Fig. 11 and in the
supplementary video, the primal-dual RGBD scene flow of
Jaimez et al. [17] is used to generate frame-to-frame 3D flows.
Similar to Sundaram, these frame-to-frame flows are converted
to point tracks by concatenation with sub-pixel interpolation,
discontinuing tracks when the flows are not forward-backward
consistent, or when the gradient of the flow field suggests that
they are close to an object boundary. Fig. 11 compares results
for optical flow and scene flow-based tracks on the Cat, Dog
and Paris scenes. In all three cases, the results using lifted
optical flow-based tracks have fewer artifacts in the output
model. This may be due to the specific flow implementations,
for instance the fact that Sundaram uses features to obtain
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(a) Input RGB

(b) Raw surfel graph

(c) Piecewise surfel graph reconstruction

(d) Piecewise volumetric reconstruction

(e) Composite volumetric reconstruction

(f) Residual depth, scale: −20 20mm.

(g) Modelling categories

(h) Results of Guo et al. [31] (using a template shape)

Fig. 9. Hybrid processing of the Pillow2 sequence comparing the result to
Guo et al. [31]. Although our result suffers from some reconstruction artifacts,
it reconstructs the entire dynamic scene including background without a
template.

better long-range flow estimation, making it less likely to lose
tracks. With the Cat sequence, however, the low-textured wall
in the background has been better tracked by the scene flow
approach leading to a more compact and coherent model of
the background. We note that our approach is agnostic as to
the source of the input point tracks.

IV. COMPUTATION TIME

The stages of processing take of the order of minutes to
hours for typical sequences (Table I). Most of the code is un-
optimized and runs on a single CPU thread, with the exception
of the volumetric fusion, which is implemented on the GPU.
Parts of the piecewise surfel graph modelling could potentially
be parallelized on the GPU or multiple threads of the CPU.
A significant speed-up could be obtained by using a GPU
implementation of the point tracking [15], which currently
takes the bulk of the processing time.

(a) MDLm = 1× 10−4, λs = 1× 10−3 (72 parts)

(b) MDLm = 0.1, λs = 0.1 (10 parts)

(c) MDLm = 1, λs = 1 (5 parts)

(d) MDLm = 10, λs = 10 (2 parts)

Fig. 10. Modelling results for the Pillow1 sequence using a various regulariza-
tion weightings. From left to right: piecewise surfel graph model, piecewise
surfel graph model error (linear scale: 0 20mm, w.r.t. input surfel
graph), piecewise volumetric model, and composite volumetric model. Note
that as the regularization is increased, the granularity of the segmentation
becomes coarser, and smaller deformations are no longer represented.

Input RGBD Results with optical flow-based tracks Results with scene flow-based tracks

Fig. 11. Comparison of results on the Cat, Dog and Paris scenes (left) using
depth-lifted optical flow tracks (centre) and RGBD scene flow-based tracks
(right). Note the increased level of reconstruction artifacts when using the
scene flow-based tracks: phantom arm reconstructions in the Cat sequence,
missing tennis ball in the Dog sequence, and errors in tracking the table top
in the Paris sequence.

Processing time (minutes) Paris Globe Dog Shirt
Num. frames 251 300 610 100

Num. 2D point tracks 31.5 k 11.7 k 42.5 k 33.6 k
Num. surfels 2.7 k 5.8 k 3.8 k 11.7 k

Flow-based point tracking 105 126 750 890
Surfel graph generation 3 4 7 10

Piecewise surfel modelling 9 27 102 9
Piecewise volumetric modelling 24 58 150 330
Composite volumetric modelling 1 1 1 1
Residual depth map computation 2 2 6 10

Total (hours) 2.4 3.6 16.9 20.8

TABLE I
PROCESSING TIMES FOR EACH STAGE OF THE HYBRID RECONSTRUCTION

PROCEDURE FOR A RANGE OF SEQUENCES (3.4 GHZ INTEL CORE I7,
NVIDIA GEFORCE GTX 560 TI GPU).


