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Typical colour digital cameras have a single sensor with a colour filter
array (CFA), each pixel capturing a single channel (red, green or blue). A
full RGB colour output image is generated by demosaicing (DM), i.e. in-
terpolating to infer the two unobserved channels for each pixel. The DM
approach used can have a significant effect on the quality of the output
image, particularly in the presence of common imaging artifacts such as
chromatic aberration (CA). Small differences in the focal length for each
channel (lateral CA) and the inability of the lens to bring all three chan-
nels simultaneously into focus (longitudinal CA) can cause objectionable
colour fringing artifacts in edge regions [3]. These artifacts can be partic-
ularly severe when using low-cost lenses.

Simple bilinear interpolation DM, while computationally efficient,
tends to produce colour artifacts around edges. Edge-directed interpo-
lation approaches, e.g. [2] are able to mitigate such artifacts to some
extent while using learned demosaicing filters, e.g. using convolutional
neural networks [4] can reduce artifacts further while preserving image
detail. However, because these rely on the co-location of edges across
colour channels, performance can degrade in the presence of strong CA.
Given estimates of the CA parameters, lateral CA can be corrected by
warping and red and blue channels (with the more densely sampled green
channel unaltered), while per channel sharpening can be used to mitigate
longitudinal CA. Performing CA correction after DM is suboptimal since
artifacts from the demosaicing tend to be carried through to the final im-
age. We propose to use a simple neural network to learn to jointly perform
DM and CA correction, producing high quality colour images subject to
severe CA as well as image noise.

Our approach is based on the demosaicing convolutional neural net-
work (DMCNN) of [4], in which 33 × 33 patches of a CFA mosaiced
input image are passed through a network with three convolutional layers
to reconstruct RGB colour patches (Fig. 1). To account for the variation
in lateral CA over the image, we train six such networks, each special-
ized to one ‘effective CFA’, where the effective CFA represents grid of
colour channels active after displacing (to the nearest pixel) the red and
blue channels of the CFA pattern so as to reverse the local displacement
caused by lateral CA. After symmetries, there are six such effective CFAs
(see Fig. 1).

Figure 1: Left: The set of effective CFA patterns produced by pixel dis-
placements of the red and blue channels. Right: DMCNN network archi-
tecture.

We generate pristine images (without JPEG compression artifacts and
CA) by down-sampling consumer digital camera images by a factor of 2
using bicubic interpolation. We then model the corresponding captured
mosaiced image for a given camera/lens (for which the CA and noise
parameters have been estimated), applying scaling (sr and sb, w.r.t. the
centres) and Gaussian blurs (σr, σg, σb) to the respective channels. Zero-
mean Gaussian noise (σn) is added to simulate sensor noise, and finally
the standard Bayer pattern sampling mask is applied. The red and blue
channels at each patch are displaced (to the nearest pixel) according to the
known CA flow before the patch is fed to the corresponding network. We
train the networks on 1 million image patches extracted from the first 1000
photos in the ‘Holidays’ dataset [1], augmenting by mirroring, rotating
and colour balance shifting source patches. The network learns to perform
DM while de-noising and mitigating the blur caused by longitudinal CA.

Fig. 2 shows results over the 490 test images, with two levels of
CA and noise. The baseline approach is edge-directed linear interpola-
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Light CA 31.5 (4.3) 32.9 (4.2) 35.8 (3.4) 0.9364 (0.045) 0.9507 (0.034) 0.9746 (0.015)
Heavy CA 27.4 (3.3) 28.4 (3.4) 32.5 (2.9) 0.8383 (0.085) 0.8655 (0.076) 0.9389 (0.031)

Figure 2: DM results on test images from the ‘Holidays’ dataset. ‘CA
+ Noise’ represents the input prior to Bayer mosaicing. PSNR and
SSIM values are for the full images. Parameters: Light CA: σr,g,b =
(0.25,0.125,0.25), sr,b = (1.001,0.999) and σn = 0.001, Heavy CA:
σr,g,b = (2.0,1.0,2.0), sr,b = (1.002,0.9985) and σn = 0.01.

tion [2] (Matlab’s demosaic function) followed by CA correction. The
neural network-based joint DM and CA correction produces a significant
improvement in image quality metrics (PSNR and SSIM) compared the
baseline approach. Qualitatively, there is a significant reduction in objec-
tionable false colour and ‘comb’ artifacts around edges, while sharpness
and noise levels are improved compared to the baseline approach. The
proposed joint DM and CA correction approach could be applied in the
production of high quality images and video from machine vision cam-
eras with low cost lenses, thus extending the viability of such hardware to
visual media production.
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