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Abstract

We present a scalable system for sketch-based image re-
trieval (SBIR), extending the state of the art Gradient Field
HoG (GF-HoG) retrieval framework through two technical
contributions. First, we extend GF-HoG to enable color-
shape retrieval and comprehensively evaluate several early-
and late-fusion approaches for integrating the modality of
color, considering both the accuracy and speed of sketch re-
trieval. Second, we propose an efficient inverse-index rep-
resentation for GF-HoG that delivers scalable search with
interactive query times over millions of images.
A mobile app demo accompanies this paper (Android).1

1. Introduction
The volume of visual data consumed on mobile devices

is growing exponentially [4]. Gestural interaction methods,
such as sketch, provide a convenient and intuitive modality
for interacting with visual content on such devices, where
touch-screens are the primary interaction methods. Yet de-
spite regaining significant traction in the research commu-
nity in recent years, sketch based image retrieval (SBIR)
has not yet seen wide-spread adoption for visual search.
Possible explanations for this include a focus primarily on
shape (structure) alone in SBR, and a lack of scalability with
most techniques able to index only a few thousand images
to remain within practical interactive query times (i.e. sub-
second response).

This paper addresses the challenge of delivering scal-
able SBIR at interactive speeds. We extend a state of the
art framework for SBIR, via the Gradient Field HoG (GF-
HoG) descriptor [11], through two key technical contribu-
tions. First, we extend GF-HoG to enable color shape re-
trieval (Fig. 1(b-c)). We report a comprehensive investiga-
tion exploring integration points for color as a new modal-
ity within the GF-HoG descriptor and index representation.
We make several recommendations on how this second,

1https://play.google.com/store/apps/details?id=
com.collomosse.sketcher

novel modality of color can be integrated for maximum
accuracy and search efficiency (speed). Second, we show
how the slow linear and kd-tree based search strategies cur-
rently proposed for GF-HoG can be substituted for an ef-
ficient inverse index structure enabling scalability of GF-
HoG to over three million images (several orders of mag-
nitude greater than largest image dataset previously demon-
strated for this framework) whilst retaining retrieval speeds
of less than one second.

2. Related Work

Early SBIR work can be categorized by the appearance
of the query; either a color blob-based or line-art sketch.
Blob based techniques match on coarse attributes of color,
texture and shape within the users’ sketch [13] and often
take into account the spatial relationships of blobs via re-
gion adjacency e.g. QBIC [9]. Spectral representations such
as the Haar Wavelet decomposition [12] and a coarse spatial
grid of 2D Fourier Transforms [18] have also been applied
to blob-based SBIR.

Line-art sketches comprise a set of lines and curves the
spatial arrangement of which encoded structural that is used
to match sketched queries to photographs. Early approaches
to line-art SBIR focused upon optimization strategies, in
which the sketched contours are deformed to fit each im-
age to assess its support for the sketch. Bimbo and Pala [1]
proposed the first of such methods using elastic template
matching to compensate for the imprecision in sketches.
Model fitting strategies have also been explored for video
search by Collomosse et al. [5]. Due to the computa-
tional expense of optimization, global feature extraction and
matching have also been explored for line-based SBIR. Eitz
et al. use structure tensors within a regular spatial grid over
the image [7]. Some approaches seek to introduce affine
invariance e.g. Chalechale et al. [3] partition the image ra-
dially, computing a edge distribution within each sector in
the frequency domain for rotational invariance.

Following the success of the Bag of Visual Words
(BoVW) framework for photographic search in the mid-
2000s, BoVW was first extended to SBIR by Hu et al.
[10]. Hu et al. [10, 11] extrapolated edge orientations from
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Figure 1. Dense field interpolations in Luminance (L*) and oppo-
nent color (a*,b*) space for a representative query sketch.

strokes to produce a dense gradient field, computing multi-
scale HoG descriptors local to strokes that were then quan-
tized within a hard-assignment BoVW pipeline. Perceptu-
ally simplified edge maps were later combined with HoG
and BoVW in [15]. Eitz et al. [8] encoded the radial dis-
tribution of edge fragments local to key-points, encoded via
a BoVW framework. Both techniques were shown to ex-
hibit invariance to translation and scale, and graceful de-
cay under rotation. Local structures were also explored in
Saavedra et al.’s key-shapes [17, 16], where the Hungar-
ian algorithm was used to match spatial distributions of lo-
cal stroke shapes. Geometric parsing of contours and al-
gorithms for their piecewise matching have also been ex-
plored for SBIR [14]. The disadvantage of such processes
is increased computational complexity in the matching step
which limits scalability to a few thousand images for prac-
tical search times. This can be ameliorated for datasets of
up to a million images by introducing an initial bulk discard
step (e.g. restricting search to a single cluster of the dataset
via k-mediods [14]) but coarse restriction of search options
in this manner often results in many false negatives.

The scalability of SBIR is discussed in Cao et al.’s
MindFinder [2]. Oriented Chamfer Matching (OCM) is
used to match sketches to edge maps, extracting edgels from
images and storing these within an inverted index (associa-
tive array) for scalable search. MindFinder reports query
times of one second over a two million image database but
has no affine invariance which affects performance. The
contribution of our work is to contrast several strategies for
combining the modalities of color and shape into an effi-
cient inverse index structure. For the first time, we extend
the state of the art GF-HoG [11] to use such an indexing
structure, and to use color line-art query sketches. With the
exception of an early work-in-progress paper that lacks any
implementation details [19], color SBIR has not yet been
addressed in the literature.

3. Scalable color Sketch Retrieval
We build upon the work of Hu et al. [10, 11], who

construct a dense field of edge orientations from a sparse
set of strokes (in sketches) or Canny edge pixels (in pho-

tographs). This synthesized gradient field (GF) is treated as
synthetic texture from which Histogram of Oriented Gradi-
ents (HoG) descriptors are computed at multiple scales and
passed through a vector quantization (codebooking) process
to build an image descriptor that is invariant to depictive
style. In this section, we briefly recap on this dense field
interpolation process (subsec. 3.1) as it remains central to
the proposed SBIR approach. We then explain how color
is encoded and represented within our index representation
(subsec. 3.2-3.3), contrasting several such strategies.

3.1. Classical Gradient Field HoG (GF-HoG)
The Gradient field HoG (GF-HoG) method [10, 11] takes

as input a binary edge field M(x) = [0, 1] where x ∈ Ω the
set of image pixel coordinates, comprising known M(x) =
1 and unknown M(x) = 0 pixels. At each known pixel a
local estimate of edge orientation is available as:

θ [x] 7→ arctan

(
δM

δy
/
δM

δx

)
, ∀x M(x) = 1. (1)

A dense orientation field Θ(x) over the image is required to
sample the HoG descriptors, for which several interpolation
strategies may be applied from the sparse x but Hu et al.
identified a Laplacian smoothness constraint as producing
the highest accuracy results:

ΘΩ = argmin
Θ

∫ ∫
Ω

(OΘ− v)
2

s.t. Θ |δΩ= θ |δΩ . (2)

The equation is solved in closed form via Poisson’s
equation with Dirichlet boundary conditions i.e. 4Θ =
divv over Ω s.t. Θ |δΩ= θ |δΩ, where v is the guidance
field derived from θ. In practice we solve for v = δM

δx and
v = δM

δy separately as single channel interpolation prob-
lems, then combine to obtain θ via eq. 1. The single channel
solution is given by solving the linear system:
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
. (3)

where the first two and last rows of the design matrix above
indicate known pixels i.e. M(xi) = 1, for which we know
the corresponding value from the guidance field vi via eq. 1
and the middle row indicates an unknown pixel for which
we wish to derive a value x′u. In this case elements of the
designed matrix row are set to 4 at the position correspond-
ing to xu and −1 at the four locations north, south, east
and west of xu. Thus the linear system comprises an n× n
design matrix for an n pixel image; in practice we reduce
complexity by resizing M preserving aspect ratio, such that
Ω is a 2D image domain with the longest side of 200 pixels.



Figure 2. Double-sigmoid filter design for L∗ channel: (left) dif-
ferent colors (a∗, b∗) have different perceptual black and white
thresholds on L∗; (right) Decision surface visualising threshold
values for black (bottom) and white (top) across the (a∗, b∗) space.
Inset: Illustrating shape of the double-sigmoid transfer function.

Eq. 3 is solvable via a sparse linear solver e.g. LAPACK
in only a few milliseconds for n of this order. This yields
values for all x′, constraining x′i = xi if M(xi) = 1.

HoG descriptors [6] are computed local to key-points
M(x) = 1 at multiple scales. Codeword frequency his-
tograms are computed for each image to yield the final
global image descriptor. Using a 9-bin angular quantiza-
tion for HoG, and a 3 × 3 grid structure with each grid
cell of side 7, 11, 25 pixels (for the multiple scales) we ob-
tain a 81-D descriptor for the BoVW. Hu et al. identified
in [11] that a dictionary size of k = 3500 yields optimal
performance of 12% mean average precision (mAP) over
the diverse Flickr15k dataset. To further improve this per-
formance we report three minor enhancements. Although
these do not form our core contributions, they establish a
state of the art baseline upon which we build our color and
scalability extensions.

1. We apply a bilateral filter [20] to the image database
prior to extracting the M(x). The anisotropic smooth-
ing preserves edges whilst abstracting image content,
removing fine texture clutter that distorts the GF. This
is also beneficial for the color fields (subsec. 3.2).

2. Applying binary dilation to M(x) produces a more ro-
bust, noise-free GF.

3. Forcing the guidance field v to zero at the single-pixel
image perimeter causes detail near the image edges to
be attenuated in Θ. This has the effect of “focusing”
the descriptor on objects more central to the image re-
ducing sensitivity to clutter.

These small improvements raise the best-reported per-
formance for classic GF-HoG over Flickr15k from 12% to
16% mAP, an equivalent boost to a very recent GF-HoG
adaptation using an expensive perceptual edge detection
step in lieu of Canny [15].

3.2. color extraction
color is incorporated into the GF-HoG pipeline using

the CIELab color space due to its approximation of per-
ceptual uniformity. The chroma (a* and b*) channels are
extracted from the color photograph, following an initial bi-
lateral filtering pass. To process the sketch we wish to create
a smooth interpolation of known color values at M(x) = 1
across Ω (similar to eq. 2), and this is achieved by solving
linear system eq. 3 using the a* or b* channel respectively
as the scalar guidance field v, to yield interpolated fields
AΩ.

3.2.1 Luminance Transfer Function

Working solely with a* and b* offers the convenience of
brightness invariance, which is attractive as color choices in
user sketches tend to be highly stereotypical (e.g. an artifi-
cial bright green to indicate the more subtle greens occur-
ring in nature) and there is a natural tendency for users to
sketch with a limited color palette. However, this 2D space
prevents discrimination between black, gray, and white all
of which manifest around the midpoint of the space a∗ =
b∗ = 0.5. This is problematic as such colors commonly
occur in both sketches and natural objects.

We therefore consider the luminance (L∗) channel of the
input image, interpolated densely via the method of sub-
sec. 3.1 using mask M(x) as before but drawing our guid-
ance field v from L∗(x) rather than θ(x) as in GF-HoG. We
pass the densely interpolated result (written L∗Ω) through
a soft min-max i.e. double-sigmoid operator to produce a
tri-level signal that soft-clamps to a binary response at ex-
tremes of L∗Ω but defaults to the midpoint of L∗Ω to offer
invariance to luminance difference for values of L∗Ω toward
the mid-range. Writing this transfer function S(λ; a, b),
where λ = L∗Ω(x) is normalized pixel intensity sampled
from the dense field and a, b are the chroma components of
a given CIELab color:

f(λ; a, b) =
0.5

1 + e−B(λ−M1(a,b))
+

0.5

1 + e−B(λ−M2(a,b))
.

(4)

S(λ; a, b) = 0.5 + s× (f(λ; a, b)− 0.5). (5)

where B is the slope of the sigmoid function; M1(.) and
M2(.) are black and white thresholds respectively set on a
per-color basis as a function of (a,b); and the weight fac-
tor s decides the lower and upper bound of the function. In
our implementation we select B = 64 and s = 0.1 (Fig.
2(b)). The values of M1(.) and M2(.) are color dependent,
i.e. each pair (a*,b*) has different black and white thresh-
olds (Fig. 2(a)). We specify these thresholds a priori via
a manual calibration process. We construct a 2-tuple look-
up table (a∗, b∗) 7→ (M1,M2) by manually selecting black
and white thresholds for pairs of (a*,b*) sampled at regular
intervals. At run-time linearly interpolating nearest look-up
values yields thresholds for any color. The resulting deci-
sion surfaces are visualized in Fig. 2(c). Since the black and



white range is subjective the threshold mesh is also subjec-
tive and is estimated as a once-only pre-process by an indi-
vidual with good color vision.

3.2.2 Feature Sampling

Sparse features are extracted local to M(x) = 1 using win-
dows of size w. We establish a 3× 3 grid within the w×w
window and compute the mean of each of the three interpo-
lated color channels within each cell. The resulting 9 val-
ues from each channel are concatenated to form 3 indepen-
dent channel feature vectors, which are then concatenated to
form a 27-D color descriptor named ĤC . Local to the same
feature point we extract the 81-D GF-HoG shape descriptor
(ĤS) following the method of subsec. 3.1, without proceed-
ing to the BoVW stage. The compound descriptor for the
sparse feature point x is formed as vi =

[
ĤC , ĤS

]
used

in separated form by some of the fusion strategies later ex-
plored. The set of color-shape descriptors Vi = {v1, ..., vn}
is collected over multiple scales, where w = {21, 33, 45}
pixels and i = [1, |D|] for the searchable set of images D.

3.3. Inverted Index

Inverted index structures originate in the retrieval of text
documents and have become widely adopted in general
content-based retrieval systems where each document can
be hashed into a set of unordered tokens or ‘codewords’.
A simple linear search results in O(N) index entries being
visited per query, scaling linearly with document count. By
contrast, an inverse index maintains a table of codewords
and for each of these, a list of documents containing those
words is maintained. As a usable hash will always result
in a much smaller codeword count (k) than document count
(N ), leading to O(k) scalability which is usually preferable
as, being a hashing function, k � N .

We adopt a vector quantization (BoVW) strategy for im-
age representation, after [11, 8, 10], and so can integrate
forms of the inverse index in our algorithm. We first de-
scribe the similarity metric used to compute the ranking
score in sub. 3.3.1. We then propose three approaches for
representing and matching V in such an index. The three
approaches – early fusion, hybrid inverted table and late fu-
sion – differ in where to fuse the shape and color modalities
together.

3.3.1 Similarity metric

During the process of image retrieval, only the visual words
available in the query are visited. The images associated
with these visual words are accumulated in the ranking
scores via eq. 6 defined between a query document (sketch)
Q and any image Di [22, 21]. Eq. 6 represents the cosine
rule fused with the inverse document frequency (IDF) rule
which accounts for the weights of a visual word in the query,

the candidate image and the whole database altogether:

Sim1(Q,Di)=
1

MQMDi

∑
p∈Q∩Di

(1+ln fQ,p)(1+ln fDi,p
)IDFp.

(6)
where MQ=

√∑
p∈Q (1+ln fQ,p)2, MDi

=
√∑

p∈Di
(1+ln fDi,p

)2,
IDFp=1+ln N

fp
. N is number of images in the whole

database, fp is number of images containing visual word
Wp, fQ,p and fDi,p are the counts of visual word Wp in the
query and image respectively.

The structure of the inverted table allows multi-
thread/multi-core processing to speed up the calculation.
Many terms in eq. 6 can also be computed offline and the in-
verted table can be trivially appended as the database grows.

3.3.2 Early fusion

For each document Di ∈ D the combined 108-D color-
shape descriptors Vi (concatenation of the 27-D ĤC and 81-
D ĤS components) for each key-point x s.t. M(x) = 1 are
collected for all windows over all scales (Fig.3(a)). Since
the color and shape components of this descriptor are of dif-
fering dimension, we up-weight the color subspace (in our
results by a factor of 2.0) to balance the modalities. Vector
quantization is performed upon a random sub-sample of all
V1..|D| via k-means resulting in a dictionary of codewords
W = W1..k. Hard assignment of Vi to W yields corre-
sponding frequency (Di, fDi,p) where fDi,p is number of
occurrences of a given word Wp in image Di.

3.3.3 Hybrid inverted table

Vector quantization is performed on the color ĤC and shape
ĤS subspaces of V independently (two codebooksWC and
WS are produced respectively). Thus, two codewords are
associated via hard-assignment to each vj , which we write
WC
p and WS

q . A hybrid inverted table is built within space
WC × WS , yielding a hash entry for each hybrid ‘word’
i.e. concatenation of WC

p and WS
p . Fig. 3(b) illustrates this

hybrid arrangement.
At query-time, visual words from the query are similarly

extracted and concatenated into compound words. Writ-
ing each compound word [WC

p W
S
p ] as WQ and WDi for

the query and document respectively, the similarity func-
tion eq. 6 may be directly applied to estimate the relevance
of each document WDi

.

3.3.4 Late fusion

In the late fusion strategy (Fig. 3(c)), separate codebooks
are independently produced for the color ĤC and shape
ĤS subspaces of V . The similarity of Q to Di is deter-
mined via eq. 6 for each modality using independent code-
books. Writing these intermediate scores Sim1C(Q,Di)
and Sim1S(Q,Di), they are combined using a geometric
mean:

Sim2(Q,Di) = Sim1S(Q,Di)
1−wSim1C(Q,Di)

w (7)



(a) (b) (c)

Figure 3. Summarizing the three approaches for color-shape indexing: (a) early fusion; (b) hybrid inverted S-C table; (c) Late fusion.

where w is the geometric weighting factor (w = 0.2
in our implementation i.e. 80% of the contribution to final
ranking is derived from the shape score). Although w is
constant for our results, it would be practical to enable user
control over this value for relevance feedback.

4. Results and Discussion
We report several experiments evaluating each strategy

for scalable SBIR indexing, considering first classical GF-
HoG with an inverse index, and then the various color-shape
representations proposed.

We use two separate datasets to evaluate the accu-
racy and computational cost. The public SBIR FlickR15k
dataset [11] comprises of 15k color photographs with asso-
ciated query sketches. The dataset is groundtruthed for 33
categories of shape and is augmented in this work with ad-
ditional annotation for color 2. We manually labeled each
image to one of the 9 colors (black, white, gray, brown,
red, yellow, blue, green, purple) according to the dominant
color of the object of interest within the photograph. Sec-
ond, we gathered a dataset of 3 million unique creative-
commons licensed images from FlickR (FlickR3M). We
used various keywords describing object classes echoing
Flickr15k to direct the web-crawler and assemble this im-
age set (e.g. “dog”, “moon”, “car”), landmarks (e.g. “Eif-
fel tower”, “London bridge”) , and scenes (e.g. “sun rise”,
“beach”).

A 90 sketch query-set was formed to evaluate our ap-
proaches over both FlickR15k and FlickR3M. Using the
330 FlickR15k query sketches (10 per each of 33 cate-
gories) we recolored the sketches to each of our 9 colors re-
sulting in 2970 sketches. We then manually culled sketches
from the query-set that did not exist within the Flickr15k
dataset. We considered both shape and color when mak-
ing this decision (e.g. a purple swan). The result of this
objective culling process was 90 sketches corresponding to

2Available for public download at http://X

Figure 4. Interference of background color can have negative im-
pact on the construction of the index.

the objects in the FlickR15k dataset. Several examples are
shown in the first column of Fig. 8.

4.1. Evaluation of Accuracy

We benchmark the performance of classical GF-HoG
with linear search to our inverted index, using the histogram
intersection (HI) metric reported to yield the highest mean
average precision (mAP) in [11]. Both methods use an
identical feature extraction process (i.e. using the shape-
only GF-HoG descriptor outlined in subsec. 3.1), and the
same dictionary size k=3500. The only difference lays in
the indexing and retrieving steps. Fig. 5 (top-left) shows
that the inverted index yields superior performance to linear
search via HI by 1.5%. More importantly, the inverted index
method performs fewer calculations than linear HI. On aver-
age a query visits less than 500k nodes of the inverted table,
whilst the number of entries visited for exhaustive search is
52.5m (equal to N × k = 15000× 3500).

Next, we evaluate the performance of the three proposed
color-shape fusion strategies. We measure the mAPs of
these approaches for a variety of shape and color (S-C)
codebook sizes, which we denote as ks and kc respectively
for the hybrid and late fusion approaches (note the early fu-
sion approach uses a single codebook size k), visualized in
Fig. 5. The early fusion approach has maximum mAP at
k = 5000, whilst the hybrid and late fusion approaches ex-

http://X


Figure 5. Top-left: Evaluating mAP for the Inverted Index vs Lin-
ear Search for classical GF-HoG over FlickR15k. Top-right: Per-
formance of early fusion color-shape indexing strategy for varying
codebook size (k). Bottom: Performance of hybrid (left) and late
(right) fusion strategies for varying dictionary sizes (ks and kc).

Figure 6. Performance of the three approaches (left) on FlickR15k
via mAP and (right) FlickR3M via Precision@20.

hibit the highest mAP at lower color and mid-range shape
codebook sizes; (ks, kc) = (3500, 10) and (5000, 30) for
the two approaches respectively. The small color codebook
size may be explained by the small number of color labels
that we used to produce the groundtruth. Notably the mAP
for the hybrid approach falls faster than the late fusion ap-
proach as kc increases, and the mAP value is more sensitive
to kc than to ks in both approaches.

Fig. 6(a) depicts the PR curves of the three strategies
at their optimal codebook size combinations. Late fusion
outperforms the others with mAP = 26%. Interestingly,
the hybrid strategy has a better performance than the early
fusion for the top 3000 results (20% of the dataset) but
has lower overall mAP. This indicates that the hybrid strat-
egy results in a majority of the relevant images distributed
both on the top and at the bottom of the ranking list (ex-
plaining the flat tail of the approach’s P-R curve). One ex-
planation is ambiguity between background and foreground
colors occurring within the window used to cut features in
subsec. 3.2.2, illustrated in Fig. 4. Here, a patch of a yellow
object on black background might be clustered to either a

Figure 7. Effect on Query speed. Impact of increasing codebook
size for the three approaches over FlickR15k: (top-left) early fu-
sion; (top-right) hybrid inverted table; (bottom-right) late fusion.
Impact of increasing dataset size for the three strategies (bottom-
left).

“yellow” cluster (ideal scenario) or a “black” cluster (sub-
optimal scenario). The structure of the hybrid inverted table
in the hybrid approach strictly enforces an “AND” relation
of shape and color, i.e. such image patches will be associ-
ated with incorrect S-C entries.

Our experiments on the FlickR3M add further support
for the late fusion strategy. Since it is difficult to label
the whole 3M images we manually assess the precision of
the approaches over the top 20 returned results i.e. produc-
ing a precision@20 metric, Fig. 6(b). Only the images
which match both shape and color are considered as rele-
vant. Also, we used “soft marking” in our assessment of
shape. For example, if the user draws a circle to represent
the moon, an image of “coin” or “ball” with the same color
can be marked as relevant. The late fusion outperforms the
others with 7% and 9% mAP boost for the top 20 results —
Fig. 8 visually illustrates several success and failure cases.

4.2. Query-time Performance
We evaluate the impact of codebook size on query-time

execution speed (Fig. 7). In the early fusion approach re-
trieval time increases linearly with k, while in the other
approaches the relationship is exponential in Ks whilst no
trend is obvious in color codebook size since the Kc range
for functional retrieval is too small. As the codebook size
increases, a sketch tends to have more non-zero bins in its
histogram meaning more entries in the inverse index must
be visited, increasing the retrieval time.

Fig. 7 (bottom-left) compares the scalability of the three
approaches in terms of query execution time as database
size grows. This has been measured by randomly sub-
sampling the FlickR3M dataset to varying degrees. The
hybrid approach exhibits the fastest growing (poorest scal-
ability) as it has the sparsest inverted table (ks × kc num-



Figure 8. Top 20 retrieval results for 8 examples from the query set for FlickR3M, including both relevant (tick) and irrelevant (cross)
results. Semi-relevant results (e.g. images having similar spatial structure, or the same shape but different color) are marked with an orange
circle. Failure case in bottom-right. Queries took between 200-700ms over 3 million images.

ber of entries). By contrast, the late fusion approach has to
process the shape and color inverted tables separately and
thus is slower yet scales close to linear. However, even
on the 3-million dataset the late fusion technique exhibits
highest accuracy takes less than one second (typically 200-
700ms) to process a query on a commodity 2.6Ghz AMD
workstation. It is worth noting that at least half of this ex-
ecution time is spent to sorting the similarity scores (with
complexity O(NlogN)) to yield the ranked list, so the ac-
tual time spent searching the inverted table(s) is less than
half of a second. In general, the querying time is shorter
for those sketches with higher level of abstraction and little
color variance since their shape and color histograms have
fewer empty codeword bins. As a further experiment we
explored application of our approach over the public Ima-
geNet datasets; 12 million diverse images typically used for
object recognition (Fig. 9). Search times for this very large
dataset averaged at 3.27 ± 0.62 seconds for the six queries
shown. These timings are for a single instance running on
a commodity PC; clearly map-reduce or similar distributed
engineering frameworks could deliver time savings.

5. Conclusions

We have reported several experiments seeking to deter-
mine the best strategy (in terms of accuracy and speed) for

incorporating both the modality of color, and the efficient
inverse index representation within the state of the art GF-
HoG SBIR framework. Neither has been demonstrated with
GF-HoG before, and more broadly, scalable SBIR has been
demonstrated only with shape (not color-shape) previously.
Our experiments with 3 million images demonstrate the
scalability of GF-HoG which had previously been demon-
strated only with 15k images. As a secondary contribution,
we extended the sketch query-set and ground-truth anno-
tation of the FlickR15k database with color labels. Con-
cluding that the best strategy for color-shape search is a late
fusion strategy with independent inverse index structure for
each modality, and vector quantization applied coarsely for
the color modality and finely for the shape modality. Fu-
ture extensions of this work will build upon the convenience
of weighting parameter w appearing after the codebooking
processes, which could be interactively varied by the user
for relevance feedback, enabling the user to easily re-rank
results by rebalancing the two modalities.
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