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ABSTRACT

We investigate the automatic labelling of “events” from ardia
recording of a sports game. We describe a technique thisasti hi-
erarchy of language models, which are a low-level model ofiatic
observations and a high-level model of audio events thatrodar-

ing a game: these models are integrated using a maximumpgntro

approach. Our models of the audio events also utilise duratnd
voicing information as well as spectral content, and we stiawfur-
ther discrimination between events is possible using themsteires.

Results on different tennis games show that the use of tleebe t
niques is better than using an approach that does not usdlimgde

of dependencies between frames and events or extra infiormiat
the form of duration and voicing.

Index Terms— Language Modeling, Audio Event Detection
1. INTRODUCTION
The long-term goal of the research reported here is to devgle-

tems that are capable of understanding, and thus partigpat,
complex human transactions.

“events”, and here, we address the problem of identifyirgdiass
of a certain audio event in a tennis game.

At this early stage of the ptpje
we need to develop tools for classification of the video andicau

vision system, are a powerful source of information. Fonepie,the
voice of the chair umpire furnishes us with information abthe
scores and the long-term progress of the match, whethes thex
challenge etc. and the applause, gasps, cheers, roars fetobe o
crowd can naturally be used as an indication of the starteetid
of a point. These audio events provide complementary irdion,
which is overlapping, and which needs to be gathered atrdifte
time-scales.

In this paper, we present a hierarchical framework to detect
dio events in live tennis matches. The fundamental ideaas\wie
convert the audio event detection task into the problem &frop-
ing language models in a two-level hierarchical structubd.the
low level, a language model is trained over the output synsieel
guence obtained from the observed acoustic features, tvéhithe
high level, an audio-event based language model is traifiee link
between the two levels is the mapping from the low-levelfs=d to
high-level audio events. The construction of the languagdets at
two levels and the link between them are optimized using mari
entropy (ME).

The rest of this paper is organised as follows. Section 2vevi
related work. Section 3 explains the framework and theorthisf
hierarchical language modelling technique. Section 4ritess the
data used, and experiments and evaluation are presentedttiors

There has been recent interest in applying multimodal aigly S- Ve end with conclusions in Section 6. Note that in this pape

techniques to identity automatically events occurringhimitsport-
ing games, describe their contents, explore their depemegrand
summarize logical relations among them. The approach iiltreu
both video and audio signals to attempt to identify signifi@vents.
Visual features are clearly a highly important source obiinfation
about events and interactions [1, 2, 3, 4]. But some inteigse-
sults in [1] show that using only visual features does noldyiery

high performance in event recognition, and this has shiftedfo-
cus towards incorporating audio information. The use ofi@ud

formation has some advantages in efficiently and effegtidetect-

term “language model” is used by analogy with language nitel
speech recognition to describe a probabilistic model ofiseges of
frames, and a probabilistic model of audio events.

2. RELATED WORK

Event detection in sports games and the highly similar thstuto-
matic segmentation of meetings have recently become igupiong-
search areas. Some approaches attempt to construct aldearas
work, while others focus on specific sequence labellinggadihe

ing events in the domain of sports video, such as the tennishma former usually utilize machine learning algorithms [5, §,sch as

video explored in this paper. The task of identifying suchres is
rather different from that of speech recognition, where“thents”
are words or phones and occur sequentially. This is becaasgse
in sports games can occur simultaneously, not all eventsfanger-
est or importance, and events can have very different durs(e.g.
the striking of a ball can be a significant event, as can a leagian
from a crowd).

In a tennis match, there are some characteristic audio tteatt
include ball striking sounds, crowd roars, commentatqueegh, the
chair umpire’s speech, line judges’ and players’ shouts €tese
can all be used in different ways to infer the state and pssgoéthe

hidden Markov models (HMM) [1], support vector machines (BvV
[5], conditional random fields [5, 6] and focus on optimizatiof
model parameters. The latter methods pay more attentiquetific
labelling tasks, such as audio sequence labelling and \@elgmen-
tation [7, 1, 4, 2]. In these methods, lower-level audio arsiial
features are often separately or jointly used to detectuimavents
or segment videos, and some good results have been obtained.
Language modelling has, of course, been crucial in the dpvel
ment of speech recognition systems, but has not been dtitsgh
in audio event detection. The work presented here focusesmn
bining low-level and high-level event modelling in a hiedaical

game, and when combined with the events detected by a computifamework that takes into account the dependencies betthedwo
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Fig. 1. Viterbi decoding algorithm

levels. The theoretical framework will be described in demathe
next section.

3. THEORETICAL FRAMEWORK

In this section, we introduce the hierarchical frameworll ahow
how the different elements within it are estimated. We thescdbe
the application of maximum entropy (ME) to the density esti@s of
the observed audio features and show how the estimates fibaré/
integrated these information into our framework. We alsscdee
the use of duration models and pitch in modelling the acoestnts
in a game of tennis.

Our goal is to classify a sequence of acoustic featuteas a
sequence adudio events, AE. In a maximum likelihood framework,
the most likely sequenc@ E* is obtained as

AE™ = arg max Pr(AE|O) 1)
In the usual way, using Bayes’ theorem:
AE" = arg max Pr(O|AFE) Pr(AE) 2

We now introduce an extra “latent” variabl€, so that we can re-
write equation 2 as

AE"

arg max Z Pr(O|F)Pr(F|AE)Pr(AE) (3)
F

argrg%xz Pr(O|F)Pr(AE|F)Pr(F) (4)
F

probability of an event given a certain frame labelling:

Pr(AE|F) ~ [[Pr(AE|AE;-1)Pr(AE|F;)(6)

t

Pr(AE|ft, fi—1ft—2). )

Here, AE, denotes the audio evetE that occurs at time.
Pr(AE|AFE:;_1) corresponds to a bigram “language model” of
audio events, which is estimated from the labelled trairiaga.
Estimation of the ternPr(AE:|F) = Pr(AE:|f, fi—1fi—2) was
performed using standard linear interpolation technigees the
estimates were then smoothed using Maximum Entropy teabsiq
3. The probability of the sequence of labé&lcan be estimated as if
it is a sequence of words or phones using a tri-gram model:

Pr(F) = [ [ Pr(fil fi-1fi-2).

~

where Pr(AE;|F)

®

Practically, it is not possible to use a model of frame evéms is
derived from the manual labelling of the frames. In such aehod
Pr(AE; = AE;|AE:—1 = AE;) ~ 1, because an event lasts for
many frames and all the frames within an event have the same la
bel. We therefore learn a model that is based on the labadfiige
training-set frames by the acoustic models. Although thislehis
errorful, it is a valuable source of information, as will bees in
section 5.

We assume that equation 4 can be approximated by the most
likely sequence over alf’ (as is standard in ASR), in which case we
can re-write it as:

In equation 4,F' represents a sequence of audio event labels, la-

belling the frames that comprise an example, ang is read as
“sum over all possible label sequences”. A label for a frame the
value{l,2,... Nag}, whereN4g is the number of distinct audio
event classes: the label is the most likely audio event &ssaowith
the frame, and is estimated from a Gaussian mixture modelMEM
of each audio event.

The three terms in equation 4 can be computed as follows:
1. The termPr(O|F) is computed from acoustic models of the au-

~
~

AE”" arg IIA&EX{PI‘(AEAAEt_l) 9)

s m}?,X{PI‘(O|F) Pr(AE:|F)Pr(F)}}

Although equation 9 looks complex, the algorithm that sslie
is actually very similar to that for connected word recoigmitfrom
a noisy phone sequence using the Viterbi algorithm [7]. &gl
illustrates this. The labelg, f> ... fx correspond to a sequence of

dio events: we used GMMs, which are trained using manually laPhone labels that have been provided by e.g. a phone loog-reco

belled data. We assume independence of frames: this pafalst
assumption is corrected during the later stages of praugskience

Pr(O|F) = [[ Pr(O: ). (5)

2. The termPr(AE|F) can be modelled as depending on the his-
tory of the audio events (approximated here by a bigram) had t

niser. Audio events correspond to words, so tAetAE:|AE:_1)
is equivalent to a bigram word modePr(AE;|F') corresponds to
the probability of a word given a phone sequence, Bn@F) to a
tri-gram model of the noisy phone labels.
We can also make use of specific acoustic properties of tHe aud
events, in this case, pitch within an event and duration ektrent.
Figure 2 shows the duration and pitch distribution of thregia

events: “chair umpire”, “commentator”, and “ball hit”. Thep row
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Fig. 2. Duration and Pitch distributions of three audio events

shows that the duration distributions of the three audimesvare
quite different: the duration of umpire’s voice ranges fraB0ms
to 750ms, while most of the commentator’'s segments last fomem
than 700ms. The impulsive sound of a racquet striking a lzedldn
mean duration of only about 90ms. Pitch information is a goay
of distinguishing between speech and non-speech everaspit€h
estimation algorithm is run on the audio events, the umpiveice
and commentators’ voices show that voicing is often deteaead
the distributions are similar, whereas the “ball hit” higtam shows
very little voicing is detected, although there are a smathber of
voiced frames caused by the players grunting!

To integrate this information, we first set empirically ded
minimum and maximum thresholds of duration and pitch forheac
audio event. During traceback in Viterbi decoding, the tara
and the distribution of each detected audio event is notédhel
label of the decoded audio event is outside its permittetidiget by
the thresholds mentioned above, it is changed to the nekelest
match in decoding, and this process is continued until antedat
does not fall outside the bounds of its threshold is founds Than
ad hoc approach that we intend to improve and develop later.

4. DATA

We performed our experiments on an audio corpus which dsris
four audio tracks, each lasting about 22 minutes, taken frimf®o
recordings of two different tennis games. Three of the samie
taken from the same tennis match but have some variationglio a
characteristics. The first track was judged to have fewerlape
ping/simultaneous audio events and was selected as antyasei
(Training). Tracks two and three are used as test s€tss{(l,

5. sound of racquet hitting ball;
6. crowd noise.

Although simultaneous events will be of importance latefroour
work, for present purposes, any segment of an audio trackahad
single label applied to it, which was what was judged to benlost
prominent event during that segment.

Audio analysis was standard: the audio sequence was wirtdowe
into 30ms-length frames with 20ms overlapping from which26
MFCC vectors were generated, which consisted of 12-D MFGC co
efficients, overall energy, and their first differences. € mean
normalization was applied at the track level.

After the tracks had been manually labelled, each frame-effe
tively had an associated label that is one of the six audiotese-
egories above. We use frame error rate (FER) as our perf@enan
measurement throughout these experiments.

5. EXPERIMENTS AND EVALUATION

The order of our experiments was as follows:
1. GMM labelling of the frames only;

2. as above, but with application of the frame based tri-gram
language model;

as above, but with application of the frame/event mapping
model and the event-based tri-gram language model;

as above, but with application of the duration and pitcldmo
elling.

Preliminary experiments indicated that a 16 mixture conembn
GMM was appropriate for modelling the audio events of “cluemr-

3.

4,

Test2): these have more overlap of crowd noise and speech. Thi€” and “commentator's speech”, whereas the other audsats,

data from the second match forms a third test $ets¢3).

which are acoustically much simpler, could be well-modelising

Each audio track was manually segmented and each segme?fi"y three components. These values could, of course, bausxh

was labelled with one of six different audio events. Thesenty
were:

1. silence;

n

speech from chair umpire;

w

speech from commentator(s);

>

cry from line judge(s);

tively optimised, but in this work, we focus on the integoatiof
the language models. Table 1 shows the frame error rate beer t
training- and test- sets. Row 1 shows the error-rates cddaivhen
labelling randomly, using the priors to choose the labelksinvelude
this as a baseline, since the priors are very different adfues six
classes. Using the GMMs on the training-set, the errorisatea-
sonably low, and most of the mis-classification is betweenuim-
pire’s and commentator’s speech. Error-rates are muclehghthe



FER Training Testl Test2 Test3 Training Testl Test2 Test3
Random (baseline) 53.6% 54.5% 54.9% 45.9% GMM+Vit.+F-LM 8.66% 17.11% | 23.10% | 31.38%
GMM 18.63% | 30.49% | 37.34% | 44.68% M-LM+E-LM
+duration 7.71% 15.76% | 22.20% | 31.67%
Table 1. Frame error rate using GMM acoustic models only +pitch 7.05% | 14.89% | 19.68% | 26.95%

test-set, especially the third set, which is from a diffémaatch that

was (presumably) recorded in a slightly different way. Irbléa
#lteration 1 2 3 4 5
Training 8.81% | 8.69% | 8.58% | 8.62% | 8.70%
Testl 17.68% | 17.58% | 17.20% | 17.16% | 17.20%
Test2 24.06% | 23.90% | 23.70% | 23.54% | 23.41%
Test3 32.19% | 32.14% | 32.00% | 31.95% | 31.93%

Table 2. Frame error rate using GMM+Viterbi+F-3LM
2, the results of using the frame based tri-gram languagesh{6e
3LM) are listed. We iteratively run this step by using the afexd
frame sequence from the previous decoding as the input éaneit
iteration. Performance here is substantially better ol @tining
and test-set than using only GMMs. The iteration of the dewpd
gives a small improvement in performance.

Training Testl Test2 Test3
GMM+Vit.+F-3LM 8.70% | 17.20% | 23.41% | 31.93%
GMM+Vit.+F-3LM 8.68% | 17.14% | 23.23% | 32.05%
M-LM
GMM+Vit.+F-3LM 8.66% | 17.11% | 23.10% | 31.38%
M-LM+E-LM
| Improvement [ +0.46% [ +0.53% [ +1.32% | +1.72% |

Table 3. Comparison of performances using mapping model and

event based language model

Table 3 compares the performances starting with the framét] Dond Zhang,
based language model (F-3LM, as in Table 2), the mapping lan-
guage model (M-LM), and the event based language model (E-

LM) are added step-by-step. Comparing with the resultsgusin
GMM+Vit.+F-3LM, the improvements obtained are small. This
may be due to a number of reasons. Firstly, the frame based lan
guage model has an excellent ability to correct mis-laddilemes
from the GMM, and so the baseline performance is already much
better than using GMMs alone. Secondly, at the moment, we are
using a “grammar factor” of one, i.e. the weights of the framased
tri-gram model and the event-based language model are lgqual
balanced. It is likely that increasing the weight of the evessed
language model will increase performance, but this is stiltler
investigation. Thirdly, the frame-based tri-gram moddt&ned on
the output from the GMM classifier, which is errorful, altlgbuits
FER is much lower than the FER on the test-set. Applying tlee th
frame-based tri-gram model to test data does improve pedoce,
but the model is inherently incapable of giving very low esrates.
The final results listed in Table 4 show that very significamt f
ther improvements are obtained when the audio event daratid
pitch distribution are included. However, the error-rateT@st Set
3 remains high, and using the duration actually increasadittle.
This may be because our duration model was from a differetthma
with a different set of commentators, a different umpirej ander
different conditions in which, for instance, the duratidrte crowd
noise may have been rather different.

6. SUMMARY AND DISCUSSION

In this paper, we have presented a technique for classifgirttio
events using a hierarchical structure that integrates &wve high-

Table 4. Frame error rate using the information of event duration
and pitch distribution

level models of the events. We have also integrated duratich
pitch information into the classification process. Ouriaitesults
are encouraging, giving relative improvements in the framer-
rate of the order of 50% when compared with labelling usingN&M
alone. The results show that using a low-level “languageetiaaf
frame events is the most powerful technique, and the extrefigan
using the a “language model” of frame events is small. Howeve
we have not yet experimented with varying the “grammar fdcib
this language model. We have also shown using duration dold pi
information can provide significant improvements in accyra

Our future work is to look at the issue of how to balance the
probabilities from the different language models used eand how
to integrate in a more effective way the contributions ofdbeation
and pitch information. We are also considering replacimg®mMs
with ergodic HMMs in order to provide more accurate initiedrhe
labelling.
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