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Abstract

This survey reviews advances in human motion capture and analysis from 2000 to 2006,

following a previous survey of papers up to 2000 [206]. Human motion capture continues

to be an increasingly active research area in computer vision with over 300 publications

over this period. A number of significant research advances are identified together with

novel methodologies for automatic initialization, tracking, pose estimation and movement

recognition. Recent research has addressed reliable tracking and pose estimation in natural

scenes. Progress has also been made towards automatic understanding of human actions and

behavior. This survey reviews recent trends in video based human capture and analysis, as

well as discussing open problems for future research to achieve automatic visual analysis

of human movement.

1 Introduction

Automatic capture and analysis of human motion is a highly active research area

due both to the number of potential applications and its inherent complexity. The re-
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search area contains a number of hard and often ill posed problems such as inferring

the pose and motion of a highly articulated and self-occluding non-rigid 3D object

from images. This complexity makes the research area challenging from a purely

academic point of view. From an application perspective computer vision-based

methods often provide the only non-invasive solution making it very attractive.

Applications can roughly be grouped under three titles: Surveillance, control, and

analysis.Surveillance applicationscover some of the more classical types of prob-

lems related to automatically monitoring and understanding locations where a large

number of people pass through such as airports and subways. Applications could

for example be: people counting or crowd flux, flow and congestion analysis. Newer

types of surveillance applications - perhaps inspired by the increased awareness of

security issues - are analysis of actions, activities and behaviors both for crowds

and individuals. For example for queue and shopping behavior analysis, detection

of abnormal activities, and person identification.

Control applicationswhere the estimated motion or pose parameters are used to

control something. This could be interfaces to games, e.g., as seen in EyeToy [3],

Virtual Reality or more generally: Human Computer Interfaces. However, it could

also be for the entertainment industry where the generation and control of personal-

ized computer graphic models based on the captured appearance, shape, and motion

are making the productions/products more believable.

Analysis applicationssuch as automatic diagnostics of orthopedic patients or anal-

ysis and optimization of an athletes’ performances. Newer applications are, an-

notation of video as well as content-based retrieval and compression of video for

compact data storage or efficient data transmission, e.g., for video conferences and

indexing. Another branch of applications is within the car industry where much

vision research is currently going on in applications such as automatic control of

airbags, sleeping detection, pedestrian detection, lane following, etc.

The number of potential applications, the scientific complexity, the speed and price
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of current hardware, and the focus on security issues have intensified the effort

within the computer vision community towards automatic capture and analysis of

human motion. This is evident by looking at the number of publications, special

sessions/issues at the major conference/journals as well as the number of work-

shops directly devoted to this topic. Furthermore, the major funding agencies have

also focused on this research field - especially the surveillance area.

The increased interest in this area has led to a large body of research which has been

digested in a number of surveys. Aggarwalet al.[10] reviewed papers on articulated

and elastic nonrigid motion published prior to 1995. Cedras and Shah [46] reviewed

methods for motion extraction published prior to 1995. Ju [152] reviewed methods

for motion estimation and recognition published prior to 1996. Aggarwal and Cai

[9] reviewed methods for motion extraction published prior to 1998. Gavrila [99]

reviewed methods for motion estimation and recognition published prior to 1998.

Moeslund and Granum [206] reviewed methods for initialization, tracking, pose

estimation and recognition published prior to 2001. Buxton [40] reviewed methods

on recognition published prior to 2002. Wanget al. [314] reviewed methods for de-

tection, tracking and recognition published prior to 2002. Huet al. [135] reviewed

methods for surveillance published prior to 2004. Aggarwal and Park [11] reviewed

methods for recognition published prior to 2005. Even though some of these sur-

veys are recent, it should be noted that the number of papers reviewed after 2000

are: 6 [40], 14 [314], 54 [135], and 10 [11].

In the relatively short period since 2000 a massive number of papers 300+ have

been published advancing state of the art. This indicates increased activity in this

research area compared to the number of papers identified in previous surveys :

87 papers [99]; 155 papers [206]; and 164 papers [314]. Recent contributions have

among other things addressed the limiting assumptions introduced in previous ap-

proaches [206]. For example, many systems now address natural outdoor scenes

and operate on long sequences of video containing multiple (occluded) people.

This is possible due to more advanced segmentation algorithms. Other examples
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are model-based pose estimation where the introduction of learnt motion models

and stochastic sampling methods have helped to achieved much faster and more

precise results. Also within the recognition area there have been significant ad-

vances in both the representation and interpretation of actions and behavior.

Due to the significance of recent advances within this field we present the current

survey. The survey is based on 280 recent papers (2000 - 2006) and structured using

the functional taxonomy presented in the 2001 survey by Moeslund and Granum

[206]. That is,Initialization covering advances in methods for ensuring that a sys-

tem commences its operation with a correct interpretation of the current scene.

Tracking covering advances in methods for segmenting and tracking humans in

one or more frames.Pose estimationcovering advances in methods for estimat-

ing the pose of a human in one or more frames.Recognitioncovering advances in

methods for recognizing the identity of individuals as well as the actions, activities

and behaviors performed by one or more humans in one or more frames.

Inspired by [206] we also provide a visual overview of all the recent referenced

papers, see table 1. For readers new to this field it is recommended to read [206]

before preceding with the survey at hand. In fact the survey at hand can be seen as

sequel to [206].

2 Model Initialization

Initialization of vision-based human motion capture and analysis often requires the

definition of a humanoid model approximating the shape, appearance, kinematic

structure and initial pose of the subject to be tracked. The majority of algorithms for

3D pose estimation continue to use a manually initialized generic models with limb

lengths and shape which approximate the individual. To automate the initialization

and improve the quality of tracking a limited number of authors have investigated

the recovery of more accurate reconstructions of the subject from single or multiple
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view images.

Initialization captures prior knowledge of a specific person or movement which can

be used to constrain tracking and pose estimation. A priori knowledge used in hu-

man motion capture can be broken into a number of sources: kinematic structure;

3D shape; color appearance; pose; and movement. In this section we review recent

research which advances estimation of kinematic structure, 3D shape and appear-

ance. Initialization of appearance is commonly an integral part of the tracking and

pose estimation and is therefore also considered in conjunction with specific ap-

proaches in sections 3 and 4. Pose detection as a pre-requisite to human motion

reconstruction is reviewed in section 4.1. A recent trend in pose estimation has

been the use of prior models of human motion which is reviewed in section 4.3.3.

2.1 Kinematic structure initialization

The majority of vision-based tracking systems assume a priori a humanoid kine-

matic structure comprising a fixed number of joints with specified degrees-of-

freedom. The kinematic initialization is then limited to estimation of limb lengths.

Commercial marker-based motion capture systems typically require a fixed se-

quence of movements which isolate individual degrees-of-freedom. The known

correspondence between markers and limbs together with reconstructed 3D marker

trajectories during movement are then used to accurately estimate limb lengths.

Hard constraints on left-right skeletal symmetry are commonly imposed during es-

timation. A number of approaches [22,24,231,294] have addressed initialization of

body pose and limb lengths from manually identified joint locations in monocular

images Anthropometric constraints between ratios of limb lengths are imposed to

allow estimation of the kinematic structure up to an unknown scale factor.

Direct estimation of the kinematic structure from sequences of a moving person has

also been investigated. Krahnstoveret al. [170,169] present a method for automati-
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cally initialising the upper-body kinematic structure based on motion segmentation

of a sequence of monocular video images. Songet al. [285] introduce an unsuper-

vised learning algorithm which uses point feature tracks from cluttered monocu-

lar video sequences to automatically construct triangulated models of whole-body

kinematics. Learnt models are then used for tracking of walking motions from lat-

eral views. These approaches provide more general solutions to the problem of

initialising a kinematic model by deriving the structure directly from the scene.

Methods that derive the kinematic structure from 3D shape sequences reconstructed

from multiple views have also been proposed. Cheunget al.[51] initialize the kine-

matic structure from the visual-hull of a person moving each joint independently.

A full skeleton together with the shape of each body part is obtained by align-

ment of the segmented moving body parts with the visual-hull model in a fixed

pose. More general frameworks are presented in [37,57] to estimate the underly-

ing skeletal spine structure from a temporal sequence of the 3D shape. The spine

is estimated from the shape at each frame and common temporal structures identi-

fied to estimate the underlying structure. This work demonstrates reconstruction of

approximate kinematic structures for babies, adults and animals.

Initialising the joint angle limits on the human kinematic structure is an impor-

tant problem to constrain motion estimation to valid postures. Manual specification

of joint angle limits has been common in many motion estimation algorithms us-

ing anthropometric data. This does not take into account the complex nature of

joint limits and coupling between limits for different degrees-of-freedom. To over-

come these limitations recent research has investigated learning models of pose

limits and correlations. Anthropometric models for the relationship between arm

joint angles (shoulder, elbow, wrist) have been used to provide constraints in visual

tracking and 3D upper-body pose estimation [207,212,218]. Demirdjian [80] con-

strain upper-body pose in tracking by projection onto a learned motion manifold.

Recent research has investigated the modelling of joint limits from measurements

of human motion captured using marker based systems[125,126] and from clinical
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data[211].

This is demonstrated to improve the performance of human pose estimation for

complex upper-body movement.

Increasingly, human motion capture sequences from commercial marker-based sys-

tems have been used to learn prior models of human kinematics and specific mo-

tions to provide constraints for subsequent tracking. Similarly motion capture data-

bases [1,2,4] have recently been used to syntheses image sequences with know 3D

pose correspondence to learn a priori the mapping from image to pose space for

reconstruction .

2.2 Shape Initialization

A generic humanoid model is used in many video-based human motion estima-

tion techniques to approximate a subjects shape. Representations have used either

simple shape primitives (cylinders, cones, ellipsoids, super-quadrics) or a surface

(polygonal mesh, sub-division surface) articulated using the kinematic skeleton

[206]. A number of approaches have been proposed to refine the generic model

shape to approximate a specific person.

In previous research [128] a generic mesh model was refined based on front and

side view silhouettes taken with a single camera. Texture mapping was then ap-

plied to approximate detailed surface appearance. Recently simultaneous capture

from multiple calibrated views has been used [45,239,287] to achieve more accu-

rate shape and appearance. Plaenkers and Fua [239] initialize upper-body shape by

fitting an implicit ellipsoidal metaball representation to stereo point clouds prior to

tracking. Carranzaet al. [45] fit a generic mesh model to multiple view silhouette

images of a person in a fixed pose prior to tracking whole-body motion. Starck

and Hilton [287] reconstruct whole-body shape and appearance for a person in an

arbitrary pose by optimizing a generic mesh model with respect to both silhou-
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ette, stereo and feature correspondence constraints in multiple views. These model

fitting approaches provide an accurate parameterized approximation of a person

provided the assumed shape of the generic model is a reasonable initial approxima-

tion. Model fitting methods commonly assume short hair and close fitting clothing

which limits their generality.

The availability of sensors for whole-body 3D scans provides accurate measure-

ment of surface shape. Techniques to fit generic humanoid models to the whole-

body scans in a specific pose enable a highly detailed representation of a persons

shape to be parameterized for animation and tracking [12,286]. Allenet al. [12]

used multiple scans of a person in different poses to parameterise the change in

body surface shape with pose. Databases of 3D scans have also been used to learn

statistical models of the inter-person variation in whole-body shape [13,295]. Re-

construction of shape from images can then be constrained by the learnt model to

improve performance.

2.3 Appearance Initialization

Due to the large intra and inter person variability in appearance with different cloth-

ing initialization of appearance has commonly been based on the observed image

set. Statistical models of color are commonly used for tracking, see section 3.3.

Initialization of the detailed surface appearance for model-based pose estimation

has also used texture maps derived from multiple view images [45,287]. A cost

function evaluating the difference in appearance between the projected model and

observed images is then used in pose estimation.

Sidenbladh and Black [270,271] address modeling the likelihood of image obser-

vations for different body parts. They learn the statistics of appearance and mo-

tion based on filter responses for a set of training examples. In a related approach,

Robertset al. [256] learn the likelihood of body part color appearance using multi-

8



modal histograms on a 3D surface model. Results are presented for 2D tracking of

upper-body and walking motions in cluttered scenes.

A recent trend has been towards the learning of body part detectors to identify pos-

sible locations for body parts which are then combined probabilistically to locate

people [195,245,257,259], see section 4.1.1. Initialization of such models requires

a large training corpus of both positive and negative training examples for differ-

ent body parts. Approaches such as AdaBoost have been successfully used to learn

body part detectors such as the face [307], hands, arms, legs and torso [195,257].

Alternatively, Ramananet al. [245] detect key-frame poses in walking sequences

and initialize a local appearance model to detect body parts at intermediate frames.

The initialization of models which accurately represent the change in appearance

over time due to creases in clothing, hair and change in body shape with movement

remains an open problem. Recent introduction of robust local body part detectors

provides a potential solution for tracking and pose estimation.

3 Tracking

Since 2000 tracking algorithms have focused primarily on surveillance applications

leading to advances in areas such as outdoor tracking, tracking through occlusion,

and detection of humans in still images. In this section we review recent advances

in these areas as well as more general tracking problems.

The notion oftrackingin visual analysis of human motion is used differently through-

out the literature. Here we define it as consisting of two processes: 1)figure-ground

segmentationand 2)temporal correspondences. Temporal correspondences is the

process of associating the detected humans in the current frame with those in the

previous frames, providing temporal trajectories through the state space. Recent

advances are mainly due to processing more natural scenes where multiple people
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and occlusions are present.

Figure-ground segmentation is the process of separating the objects of interest (hu-

mans) from the rest of the image (the background). Methods for figure-ground seg-

mentation are often applied as the first step in many systems and therefore a crucial

process. Recent advances are mostly a result of expanding existing methods. We

categorize these methods in accordance with the type of image measurements the

segmentation is based on: motion, appearance, shape, or depth data. Before de-

scribing these we first review recent advances in background subtraction as this has

become the initial step in many tracking algorithms.

3.1 Background Subtraction

Up until the late 90s background subtraction was known as a powerful preprocess-

ing step but only in controlled indoor environments. In 1998 Stauffer and Grim-

son [289] presented the idea of representing each pixel by a mixture of Gaussians

(MoG) and updating each pixel with new Gaussians during run-time. This allows

background subtraction to be used in outdoor environments. Normally the updat-

ing was done recursively, which can model slow changes in a scene, but not rapid

changes like clouds. The method by Stauffer and Grimson has today become the

standard of background subtraction. However, since 1998 a number of advances

have been seen which can be divided intobackground representation, classifica-

tion, background updating, andbackground initialization.

3.1.1 Background Representation

The MoG representation can be in RGB space, but also other color spaces can

be applied. Often a representation where the color and intensities are separated is

applied, e.g., YUV [319], HSV [61] and normalized RGB [193], since this allows

for detecting pixels in shadow [243]. Using a MoG in a 3D color space corresponds
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to ellipsoids or spheres (depending on the assumptions on the covariance matrix)

of the Gaussian representations [289,193,340]. Other geometric representations are

truncated cylinders [166] and truncated cones [16].

Conceptually different representations have also been developed. Elgammalet al.

[87] use a kernel-based approach where they represent a background pixel by the

individual pixels of the lastN frames. Haritaogluet al. [121] represent the mini-

mum and maximum value together with the maximum allowed change of the value

in two consecutive frames. Enget al. [91] divide a learnt background model into

a number of non-overlapping blocks. The pixels within each block are grouped

into at most three classes according to homogeneity. The means of these classes

are then the representation of the background for this block, i.e., a spatio-temporal

representation.

The choice of representation is not only dependant on the accuracy but also on the

speed of the implementation and the application. This makes sense since the overall

accuracy of background subtraction is a combination of representation, classifica-

tion, updating, and initialization. For example, Cucchiaraet al. [61] use only one

value to represent each background pixel, but still good results (and speed) can be

obtained due to advanced classification and updating. It should however be noted

that the MoG representation is by far the most widely used method1 .

3.1.2 Classification

A number of false positives and negatives will often be present after a background

subtraction, for example due to shadows [243]. Using standard filtering techniques

based on connected component analysis, size, median filter, morphology, and prox-

imity [87,193,341,61,329,113] can improve the result. Recent methods have tried

to directly identify the incorrect pixels and use classifiers to separate the pixels

into a number of sub-classes: unchanged background, changes due to auto iris,

1 See [342,174] for optimizations of the MoG representation.
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shadows, highlights, moving object, cast shadow from moving object, ghost ob-

ject (false positive), ghost shadow, etc. [130,49,61]. Classifiers have been based on

color, gradients [193], flow information [61], and hysteresis thresholding [91].

3.1.3 Background Updating

In outdoor scenes the value of a background pixel will change over time and an up-

date mechanism is therefore required. The slow changes in the scene can be updated

recursively by including the current pixel value into the model as a weighted com-

bination [289,193,87,61]. A different approach is to measure the overall average

change in the scene compared to the expected background and use this to update

the model [16,329]. In general, for a good model update only pixels classified as

unchanged background should be updated.

Rapid changes in the scene are accommodated by adding a new mode to the model.

For the MoG model a new mode is a new Gaussian distribution, which is initiated

whenever a non-background pixel is detected. The more pixels (over time) that

support this distribution the more weight it will have. A similar approach is seen in

[166,16] where the background model, denoted a codebook, for each pixel is rep-

resented by a number of codewords (cylinders [166] or cones [16] in RGB-space).

During run-time each foreground pixel creates a new codeword. A codeword not

having any pixels assigned to it for a certain number of frames is eliminated.

3.1.4 Background Initialization

A background model needs to be learned during an initialization phase. Earlier ap-

proaches assumed that no moving objects are present in a number of consecutive

frames and then learn the model parameters in this period. However, in real scenar-

ios this assumption will be invalid and recent methods have therefore focused on

initialization in the presence of moving objects.
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In the MoG representation moving objects can to some extend be accepted during

initialization since each foreground object will be represented by its own distribu-

tion which is likely to have a low weight. However, this erroneous distribution is

likely to produce false positives in the classification process. A different approach

is to find only pixels that are true background pixels and then only apply these for

initialization. This can be done using a temporal median filter if less than50% of

the values belong to foreground objects [104,121,91]. Enget al. [91] combine this

with a skin detector to find and remove humans from the training images.

Recent alternatives first divide the pixels in the initialization phase into temporal

subintervals with similar values. Second, the ”best” subinterval belonging to the

background is found as the subinterval with the minimum average motion (mea-

sured by optical flow) [114] or the subinterval with the maximum ratio between

the number of samples in the subinterval and their variance [312]. The codeword

method mentioned above uses a temporal filter after the initialization phase to elim-

inate any codeword that has not recurred for a long period of time [166]. For com-

parative studies among some of the different background subtraction methods see

[47,312,53].

3.2 Motion-Based Segmentation

Motion-based figure-ground segmentation is based on the notion that differences in

consecutive images arise from moving humans, i.e., by finding the motion you find

the human. The motion is measured using either flow or image differencing.

Sidenbladh [269] calculates optical flow for a large number of image windows each

containing a walking human. A Support Vector Machine (SVM) is used to detect

walking humans in video. Optical flow can be noisy and instead image flow can

be measured using higher level entities. For example, Gonzalezet al. [107] track

KLT-features to obtain flow vectors, Sangiet al. [263] extract flow vectors from
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displacements of pixel-blocks, and Bradski and Davis [34] find flow vectors as

gradients in Motion History Images (MHI) [71].

Image differencing adapts quickly to changes in the scene, but pixels from a human

that has not moved or are similar to their neighbors are not detected. Therefore,

an improved version is to use three consecutive images [156,121,58]. A different

type of image differencing is used by Violaet al. [309]. They apply the principle

of their novel face detector [307], where simple features are combined in a cascade

of progressively more advanced classifiers. A rectangle of pixels in the current

image is compared to the corresponding rectangle in the previous image. This is

done by shifting the rectangle in the current image up, down, left, and right. Image

differencing is then preformed and the lower the energy in the output the higher

the probability that the human has actually moved (shifted) in this direction. The

output of these operations is used to build a person detector, which is trained using

AdaBoost.

3.3 Appearance-Based Segmentation

Segmentation based on the appearance of the human is built on the idea that 1) the

appearance of human and background is different and 2) the appearance of individ-

uals are different. The approaches work by building an appearance model of each

human and then either building appearance models of the segmented foreground

objects in the current image and comparing them with the predicted models, or by

directly segmenting the pixels in the current image that belong to each model. Some

of these methods are independent on the temporal context, meaning that the meth-

ods apply a general appearance model of a human, as opposed to methods where

the appearance model of the human is learned/updated based on previous images

in the current sequence.

14



3.3.1 Temporal context-free

Temporal context-free methods are used to detect humans in a still image [213],

to detect humans entering a scene [223], or to index images in databases [228].

Advances are mostly on using massive amount of training data for learning good

classifiers. For example, Okumaet al. [223] use 6000 images to train an Adaboost-

based classifier. Other examples are using DCT coefficients [228], using partial-

occlusion handling body-part detectors [213], (see also section 4.1.1), or the block-

based method by Utsumi and Tetsutani [304]. In [304] the image is divided into

a number of blocks and the mean and covariance matrix of the intensities are cal-

culated for each block. A distance matrix is constructed where an entry represents

the generalized Mahalanobis distance between two blocks. The detection is now

based on the fact that for non-human images the distances between blocks in the

proximity will be larger than for images containing a human.

Common for these methods is that the human is detected as a box (normally a

bounding box) and clutter in the background will therefore have an effect on the

results. Furthermore, as the methods usually represent the human as one entity, as

opposed to a number of sub-entities, occlusion will in general effect the methods

strongly. Drastic illumination changes will also effect the methods since the models

are general and do not adapt to the current scene.

3.3.2 Temporal context

Temporal context refers to methods where a model which is learned and updated in

previous images is used to either detect foreground pixels or to classify foreground

pixels to a particular human being tracked. The methods either operate at pixel level

or region level. At pixel level the likelihood of each (foreground) pixel belonging to

a human model is calculated. The region level is when a region in the image, such

as a bounding box, is compared to an appearance model of the humans that are

predicted to be present in the current frame, i.e. the probability that a region in an

15



image corresponds to a particular human model. Color-based appearance models

have recently received attention leading to advances allowing tracking in outdoor

scenes with partial occlusion. This has led to a need for models that can represent

the differences between individuals even during partial occlusion.

In many systems the color of a human is represented as either a color histogram

[193,59,223,323,340,134] or a MoG [165,261,158,325]2 . Color histograms are

normally compared using the Bhattacharyya distance, which can be improved by

weighting pixels close to the center of the human higher than those close to the

border [59,340]. In Zhao [340] the similarity is combined with the dissimilarity

with respect to the color histogram of the background. MoG representations are

normally compared using the Mahalanobis distance, which can be evaluated ef-

ficiently by using only one Gaussian [158] and assuming independence between

color channels [62]. Alternatively, only the mean can be used [325].

Representing the entire human by just one color model is often too coarse a rep-

resentation even though the model contains multiple modes. Recent advances are

therefore on including spatial information. For example using a Correlogram, which

is a co-occurrence matrix that expresses the probability of two different colored

pixels being found at a certain distance form each other [139,44]. Another way of

adding spatial information is to divide the human into a number of sub-regions and

represent each sub-region with either a color histogram or a MoG [203,223,261,325].

Hu et al. [134] use an adaptive approach to obtain three sub-regions representing

the head, torso, and legs. A more general approach is to model the human as a

number of blobs where each blob is a connected group of pixels having a similar

color [165,232]. Grouping the blobs together temporally and spatially into an entire

human requires some bookkeeping, but a rough human model can assists as seen in

[232].

2 According to McKennaet al. [193] MoG is preferred with small sample sets and many
possible colors, whereas a color histogram is preferred when many color samples are
present in a coarsely quantified color space.
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3.4 Shape-Based Segmentation

The shape of a human is often very different from the shape of other objects in a

scene. Shape-based detection of humans can therefore be a powerful cue. As op-

posed to the appearance-based models, the shapes of individuals are often very

similar. Hence, shape-based methods applied to tracking only involves simple cor-

respondences. The advances are first of all to allow human detection and tracking

in uncontrolled environments. Due to the recent advances in background subtrac-

tion reliable silhouette outlines can describe the shape of the humans in the image

sequence. Furthermore, advances in representations and segmentation methods of

humans in still images have also been reported. As was done for the appearance-

based methods, we divide the shape-based methods into those not using the tempo-

ral context and those using the context.

3.4.1 Temporal context-free

Zhao and Thorpe [338] use depth data to extract the silhouettes of individuals in the

image. A neural network is trained on upright humans and used to verify whether

the extracted silhouettes actually originate from humans or not. To make the method

more robust the gradients of the outline of a silhouette are used to represent the

shape of the human. Leibeet al.[180] learn the outlines of walking humans and

store them as a number of templates. Each of these are matched with an edge ver-

sion of the input image over different scales using Chamfer matching. The results

are combined with the probability of a person being present, which is measured

by comparing small learned image patches of the appearance of humans and their

occurrence distribution. Dalal and Triggs [67] use an SVM to detect humans in a

window of pixels. The input is a set of features encoding the shape of a human. The

features come from using a spatially arranged set of HOG (Histogram of Oriented

Gradients) descriptors. The HOG descriptor operates by dividing an image region

into a number of cells. For each cell a 1D histogram of gradient directions over the
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pixels in the cell is calculated. HOGs are related to Shape Contexts [26] and Scale

Invariant Feature Transformation [186]. Zhao and Davis [337] learn a hierarchy of

silhouette templates for the upper body of humans sitting. The outline of the silhou-

ettes in the templates is used to detect sitting humans in a frame. This is done using

Chamfer matching at different scales together with a color-based detector that is

updated iteratively.

3.4.2 Temporal context

When the temporal context is taken into consideration shape-based methods can be

applied to track individuals over time. In case of temporal smoothness the shape in

the previous frame can be used to find the human in the current frame. Haritaogluet

al. [121] preform a binary edge correlation between the outlines of the silhouettes

in the last frame and the immediate surroundings in the current image. Daviset al.

[75] use a Point Distribution Model (PDM) to represent the outline of the human.

The most likely configurations of the outline from the previous frame are used

to predict the location in the current frame using a particle filter. Predictions are

evaluated by comparing the edges of the outline with those in the image. A similar

approach is seen in [167] where the active shape model is applied to find a fit in

the current frame. Atsushiet al. [18] model the pose of the human in the previous

frame by an ellipse and predict nine possible poses of the human in to the current

frame. Each of these is correlated with the silhouettes in the current image in order

to define the current pose of the human. Krügeret al. [172] correlate the extracted

silhouette with a learned hierarchy of silhouettes of walking persons. At run-time

a Bayesian tracking framework concurrently estimates the translation, scale, and

type of silhouette.

In situations of partial occlusion the shape-based methods just described often fail

due to lack of global shape information. Advances therefore include detection of

humans based on only a few parts of the overall shape. In the work by Wu and Neva-

tia [320] four different (body)parts are detected: full-body, head-shoulder, torso,
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and legs. For each part a detector is trained using a boosting classifier together

with edgelets (small connected chains of edge pixels) which are quantified into

different orientations, see also section 4.1.1. When people group together the oc-

clusion often becomes severe and the only reliably shape information is the head

or head-shoulder profile. In [121,327] the head candidates are found by analyzing

the silhouette boundary and the vertical projected histogram of the silhouette. A

similar approach is seen in [339] except that also an edge-based method to find the

head-shoulder profile inside silhouettes is applied.

3.5 Depth-Based Segmentation

Figure-ground segmentation using depth data is based on the idea that the human

stands out in a 3D environment. Methods are either based directly on estimated

3D data for the scene [146,185,118,122,328] or indirectly by combining different

camera views after features have been extracted [202,203,326,147]. Advances are

mainly due to faster computers allowing for handling multiple camera inputs.

Background subtraction can be sensitive to lighting changes. Therefore a depth-

based approach can be taken where the background is modeled as a depth model

and compared to estimated depth data for each incoming frame in order to segment

the foreground. A real-time dense stereo algorithm is, however, still problematic

unless special hardware is applied [185]. An approach to circumvent this is the

work by Ivanovet al. [146] where an online depth map is not required. Instead

the mapping between pixels in two cameras is learnt. This allows for an online

comparison between associated pixels (defined by the mapping) in the two cameras.

Detection is now performed based on the assumption that the color and intensity

are similar for the pixels if and only if they depict the background. In [185] the

merits and drawbacks of this approach are studied in detail.

Other advances in human detection based on depth data include the work by Har-
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itaoglu et al. [118] where depth data produced by ceiling-mounted cameras are

projected to the ground-plane. Here humans are located by looking for a 3D head-

shoulder profile. Similar approaches are seen in [122,328] except for the camera

placement and that [122] apply voxels as opposed to 3D points.

Mittal and Davis [202,203] detect humans using an appearance-based method in

each camera view. The center of each detected human is combined with those found

in another image using region-based stereo constrained by the epipolar geometry.

The resulting 3D points are projected to the ground-plane and represented proba-

bilistically using Gaussian kernels and an occlusion likelihood. In Yanget al. [326]

silhouettes from different cameras are combined into the visual hull. The incorrect

interpretations are pruned using a size criterion as well as the temporal history.

Iwase and Saito [147] apply multiple cameras to detect and track multiple people.

In each camera the feet of each person are detected using background subtraction

and knowledge of the environment. For each camera all detected feet are mapped

to a virtual ground-plane where an iterative procedure resolves ambiguities.

3.6 Temporal Correspondences

One of the primary tasks of a tracking algorithm is to find the temporal correspon-

dences. That is, given the state ofN persons in the previous frame(s) and the current

input frame(s), what are the states of the same persons in the current frame(s). Here

the state is mainly the image position of a person, but can contain other attributes,

e.g., 3D position, color and shape.

Previously tracking algorithms were mostly tested in controlled environments and

with only a few people present in the scene. Recently, algorithms have addressed

more natural outdoor scenarios where multiple people and occlusions are present.

One problem is to have better figure-ground segmentation as discussed above. An-

other equally important problem is how to handle multiple people that might oc-
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clude each other. In this section we discuss advances related to temporal correspon-

dencesbefore and after occlusionand temporal correspondencesduring occlusion.

3.6.1 Temporal Correspondences Before and After Occlusion

Before any tracking can commence a model of each individual must be constructed.

Recent methods are aiming at doing this automatically. One way is to look for (new)

large foreground objects possible near the boundaries3 [121,193,16,261]. Alterna-

tively, a new person can be defined as a foreground object detected far from any

predictions [44]. Khan and Shah [165] fit 1D Gaussians to the foreground pixels

projected to the x-axis. If the number of good fits is higher than the predicted num-

ber of people in the scene then a new person has entered the scene.

When the tracking has commenced the problem is to find the temporal correspon-

dences between predicted and measured states. This has recently been approached

using a correspondence matrix, which has the predicted objects in one direction and

the measured objects in the other direction. For each entry in the matrix a distance

between predicted and measured object is calculated. This gives the likelihood that

a predicted and measured object are the same. By analyzing the columns and rows

the following situations can be hypothesized: new object, object lost, object match,

split situation, and merge situation. In case of for example merge and split situa-

tions the matrix can not be resolved directly and ad hoc methods are applied. For

example by analyzing the motion vectors and the area (change) of each foreground

object [193,44,62,323,329,113].

Alternatively, global optimizations can also be applied. Polatet al.[240] use a Mul-

tiple Hypothesis Tracker to construct different hypotheses which each explains all

the predictions and measurements, and chooses the hypothesis which is most likely.

To prune the combinatorial number of different hypotheses smoothness constraints

3 Similar approaches can be used to detect when people are leaving the scene, see e.g.,
[16,113].
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on the motion trajectories are introduced. If the total number of people in the scene

is known in advance the pruning becomes less difficult [134,25]. Another global

optimization can be seen in [340,281] where a Particle filter is applied and where

each state is a multi-object configuration (hypothesis). Objects are allowed to en-

ter and exit the scene meaning that the number of elements in the state vector can

change. To handle this the Particle filter is enhanced by a trans-dimensional Markov

chain Monte Carlo approach [111]. This allows new objects to enter and other ob-

jects to leave the scene, i.e., the dimensionality of the state space may change. In

the work by Li et al. [183] a tree-based global optimization for correspondence

between multiple objects across multiple views is presented. This approach is used

for real-time tracking of hand, head and feet for whole-body pose estimation.

3.6.2 Temporal Correspondences During Occlusion

Tracking during occlusion was not addressed in previous work, instead the track of

the group was used to update the states of the individuals. However, this makes it

impossible to update the models of the individuals, which can result in unreliable

tracking after the group splits up. Furthermore, interactions between humans dur-

ing occlusions is difficult to analyze when they are represented as one foreground

object. Therefore the problem of finding the correspondences during occlusion has

been investigated recently.

In some recent systems the first task is to actually detect that an occlusion is

present. This can be done using the corresponding matrix mentioned above or as

in [165,44,261]. Khan and Shah [165] detect a non-occlusion situation as a situa-

tion when the detected foreground objects are far from each other. Capelladeset

al. [44] define a merge as a situation where the total number of foreground objects

has decreased and where two or more foreground objects from the previous frame

overlap with one foreground object in the current frame. In the work by Rothet al.

[261] a merge is detected as one of eight different types of occlusion based on the

depth ordering and the layout of the bounding boxes. This allows for only using the
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reliable parts of the bounding box to update the position of the human.

Different approaches for assigning pixels to individuals during occlusion have been

reported in recent publications. A local approach is to assign each pixel to the most

likely predicted model using a probabilistic method [165,232]. A local approach

allows for bypassing the occlusion problem but it is also sensitive to noise and

therefore often combined with some post-processing to reassign wrongly classified

pixels. Global approaches try to classify pixels based on for example the assump-

tion that people in a group are standing side by side with respect to the camera.

This assumption allows for defining vertical dividers between the individuals based

on the positions of their heads. Foreground pixels are then assigned to individuals

based on these dividers [120,327,323]. When a certain depth ordering is present in

the group the assumption fails.

In the work by McKennaet al. [193] the depth ordering is found explicitly. During

occlusion the likelihood of each pixel in the foreground object belonging to a person

is calculated using Bayes rule. The posteriors for each person are added to obtain

an overall probability of each person. These probabilities are then used to define

the fraction of each person that is visible. This is denoted a visibility index and

can be applied to find the depth ordering. In [261] the depth ordering is based on

assuming a planar floor. This will result in the closest object to the camera having

the highest vertically coordinate. Xu and Puig [323] generalize this idea by using

projective geometry to find the line in the image that corresponds to the ”horizon

line” in the 3D scene. The object closest to the camera is found as the object closest

to this horizontal line.

3.7 Discussion on Advances in Visual Tracking of Humans

Advances in figure-ground segmentation have to a large extent been motivated by

the increased focus on surveillance applications. For example, in order to have
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fully autonomous systems operating in uncontrolled environments the segmenta-

tion methods have to be adaptive. This has to some extent been achieved within

background subtraction where analysis of video sequences of several hours has

been reported [16]. However, for 24 hour operation special cameras (and algo-

rithms) are required. Work in this direction has started [58,73] but no one has so

far been able to report a truly autonomous system. Furthermore, in most surveil-

lance applications multiple cameras are required to cover the scene of interest at

an acceptable resolution. Systems for self-calibrating and tracking across different

cameras are being investigated [164,18,158,300], but again, no fully autonomous

system has been reported.

Another advance in segmentation is to apply spatial information in the color-based

appearance models, for example by dividing each foreground object into a number

of regions each having a color representation [203,223,261,325,134,165,232] or

by correlograms [139,44]. This has allowed for relatively reliable detection and

tracking of people even when multiple people are present with occlusion. Even an

accurate appearance model might fail when the lighting changes are significant.

The recent focus on natural scenes has also led to advances within methods for

temporal correspondence, especially handling the occlusion problem. Advances are

mainly due to the use of probabilistic methods, for example to segment pixels to in-

dividuals during occlusion [193,165,232,235] and also to handle multiple hypothe-

ses and uncertainties using stochastic sampling methods [134,240,223,340,325,281].

In fact, concurrent segmentation and tracking can be handled by stochastic sam-

pling methods. It is expected that future work will be based on this framework

since it unifies segmentation and trackingand the associated uncertainties.

The use of common benchmark data has begun to underpin progress. As has been

seen in the speech community for many years and lately in the face recognition

community, widely acceptable benchmark data can help to focus research. Within

human detection a few recent benchmark data sets have been reported [213,67].
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Within tracking in general the PETS and VS-PETS data sets [5] have been applied

in many systems.

4 Pose Estimation

Pose estimation refers to the process of estimating the configuration of the under-

lying kinematic or skeletal articulation structure of a person. This process may be

an integral part of the tracking process as in model-based analysis-by-synthesis ap-

proaches or may be performed directly from observations on a per-frame basis. The

previous survey [206] separated pose estimation algorithms into three categories

based on their use of a prior human model:

Model-Free: This class covers methods where there is no explicit a priori model.

Previous methods in this class take a bottom up approach to tracking and la-

belling of body parts in 2D [319] or direct mapping from 2D sequences of image

observations to 3D pose [35].

Indirect Model Use: In this class methods use an a priori model in pose esti-

mation as a reference or look-up table to guide the interpretation of measured

data. Previous examples include human body part labelling using aspect ratios

between limbs [41] or pose recognition [119].

Direct Model Use: This class uses an explicit 3D geometric representation of

human shape and kinematic structure to reconstruct pose. The majority of ap-

proaches employ an analysis-by-synthesis methodology to optimize the similar-

ity between the model projection and observed images [129,310].

In this section we identify recent contributions and advances in each category of

pose estimation algorithms. A number of trends can be identified from the liter-

ature. Three research directions which have each received considerable attention

are: the introduction of probabilistic approaches to detect body parts and assemble

part configurations in the model-free category; the incorporation of learnt motion
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models in pose estimation to constrain the recovered 3D human motion; and the use

of stochastic sampling techniques in model-based analysis-by-synthesis to improve

robustness of 3D pose estimation.

Two important distinctions relating to the difficulty of the pose estimation problem

are identified in this analysis: pose estimation from single vs. multiple view im-

ages; and 2D pose estimation in the image plane vs. full 3D pose reconstruction.

The most difficult and ill-posed problem is the recovery of full 3D pose from single

view images towards which initial steps have been made. There has also been sub-

stantial research addressing the problems of 2D pose estimation from single view

and 3D pose estimation from multiple views. For example recent advances have

demonstrated 2D pose estimation in complex natural scenes such as film footage.

4.1 Model Free

A recent trend to overcome limitations of tracking over long sequences has been the

investigation of direct pose detection on individual image frames. Two approaches

have been investigated which fall into this model-free pose estimation category:

probabilistic assemblies of partswhere individual body parts are first detected and

then assembled to estimate the 2D pose; andexample-based methodswhich directly

learn the mapping from 2D image space to 3D model space.

4.1.1 Probabilistic Assemblies of Parts

Probabilistic assemblies of parts have been introduced for direct bottom-up 2D

pose estimation by first detecting likely locations of body parts and then assem-

bling these to obtain the configuration which best matches the observations. The

advantage of this approach over tracking is that it does not assume small changes

in pose between frames and is therefore potentially robust to rapid movement. Tem-

poral information may be incorporated to estimate consistent pose configurations
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over sequences. Forsythe and Fleck [95] introduced the notion of body plans to

represent people or animals as a structured assembly of parts learnt from images.

Following this direction [93,143] used pictorial structures to estimate 2D body part

configurations from image sequences. Combinations of body part detectors have

recently been used to address the related problem of locating multiple people in

cluttered scenes with partial occlusion [213,320], see section 3.

Probabilistic assemblies of body part detectors (face, hands, arms, legs, torso) have

been investigated for bottom up estimation of whole-body 2D pose in individual

frames or sequences [195,245,257,259]. Individual body parts are detected using

2D shape [257], SVM classifiers [259], AdaBoost [195], and locally initialized

appearance models [245]. Mikolajczyket al. [199] introduced probabilistic assem-

blies of robust AdaBoost body part detectors to locate people in images providing

a coarse 2D localization. The probabilistic assembly of parts models the joint like-

lihood of a body part configuration. In [195] this approach is extended to whole-

body 2D pose estimation in frontal images using RANSAC to assemble body part

configurations with prior pose constraints. Ramananet al. [245] present a related

approach where lateral views of a scissor-leg pose for a person walking or running

are detected from film footage. Detected poses are then used as key-frames to ini-

tialize a local appearance model for body part detection and 2D pose estimation at

intermediate frames.

Recent work has also introduced approaches for 2D pose estimation from single

images. Renet al. [250] use pairwise constraints between body parts to assemble

body part detections into 2D pose configurations. Pairwise constraints include as-

pect ratio, scale, appearance, orientation and connectivity. Huaet al. [136] present

an approach to 2D pose estimation from a single image using bottom-up feature

cues together with a Markov network to model part configurations. Both of these

approaches demonstrate impressive results for pose estimation in cluttered scenes

such as sports images.
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An important contribution of approaches based on the probabilistic assembly of

parts is 2D pose estimation in cluttered natural scenes from a single view. This

overcomes limitations of many previous pose estimation methods which require

structured scenes, accurate prior models or multiple views.

4.1.2 Example-based methods

A number of example-based methods for human pose estimation have been pro-

posed which compare the observed image with a database of samples. Brand [35]

used a hidden Markov model (HMM) to represent the mapping from 2D silhouette

sequences in image space to skeletal motion in 3D pose space. In this work the map-

ping for specific motion sequences was learnt using rendered silhouette images of a

humanoid model. The HMM was used to estimate the most likely 3D pose sequence

from an observed 2D silhouette sequence for a specific view. Similarly, Rosaleset

al. [244,260] learn a mapping from visual features of a segmented person to static

pose using neural networks. This representation allows 3D pose estimation invari-

ant to speed and direction of movement. Viewpoint invariant representation of the

mapping from image to pose is investigated in [225].

To overcome limitations of tracking researchers have investigated example-based

approaches which directly lookup or model the mapping from silhouettes to 3D

pose [6,132,267,277]. Howe [132] uses a direct silhouette lookup using Cham-

fer distance to select candidate poses together with a Markov chain for temporal

propagation for 3D pose estimation of walking and dancing. Shakhnarovichet al.

[267] present an example-based approach for viewpoint invariant pose estimation

of upper-body 3D pose from a single image. Parameter-sensitive hashing is used to

represent the mapping between observed segmented images from multiple views

and the corresponding 3D pose. Graumanet al. [110] learn a probabilistic repre-

sentation of the mapping from multiple view silhouette contours to whole-body 3D

joint locations. Pose reconstruction is demonstrated for close-up images of a walk-

ing person from multiple or single views. Similarly, Elgammal and Lee [88] learn
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multiple view-dependent mapping from silhouettes to 3D pose for walking actions.

Agarwal and Triggs [6,8] presented an example-based approach for 3D pose esti-

mation from single view image sequences. Nonlinear regression is used to learn the

mapping from silhouette shape descriptors to 3D pose. Results demonstrate recon-

struction of long sequences of walking motions with turns from monocular video.

Example-based approaches represent the mapping between image and pose space

providing a powerful mechanism for directly estimating 3D pose. Commonly these

approaches exploit rendering of motion capture data to provide training examples

with known 3D pose. A limitation of current example-based approaches is the re-

striction to the poses or motions used in training. Extension to a wider vocabulary

of movements may introduce ambiguities in the mapping.

4.2 Indirect model use

A number of researchers have investigated direct reconstruction of both model

shape and motion from the visual-hull [51,196,197] without a prior model. Mikicet

al. [196,197] present an integrated system for automated recovery of both a human

body model and motion from multiple view image sequences. Model acquisition is

based on a hierarchical rule-based approach to body part localization and labelling.

Prior knowledge of body part shape, relative size and configuration is used to seg-

ment the visual-hull. An extended Kalman filter is then used for human motion

reconstruction between frames. A voxel labelling procedure is used to allow large

inter-frame movements. Cheunget al. [51] first reconstruct a model of the kine-

matic structure, shape and appearance of a person and then use this to estimate the

3D movement. Tracking is performed by hierarchically matching the approximate

body model to the visual-hull using color matching along the silhouette boundary

edge.

An alternative approach based on full 3D-to-3D non-rigid surface matching using
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spherical mapping is presented in [288]. Alignment of a skeletal model with the

first frame allows the 3D motion to be recovered from the non-rigid surface mo-

tion. Results of these approaches demonstrate 3D human pose estimation for rapid

movement of subjects wearing tight clothing.

These approaches exploit scene reconstruction from multiple views to directly re-

cover both shape and motion. This approach is suitable for multiple camera studio

based systems allowing estimation of complex human movements.

4.3 Direct model use

The use of an explicit model of a persons kinematics, shape and appearance in

an analysis-by-synthesis framework is the most widely investigated approach to

human pose estimation from video. In the previous survey [206] fifty papers (40%

of those surveyed) were in this category starting with some of the earliest work in

human pose estimation [129]. Model-based analysis-by-synthesis has continued to

be a dominant methodology for human pose estimation.

The main novel research directions are: the introduction of stochastic sampling

techniques based on sequential Monte Carlo; and the introduction of constraints on

the model in particular learnt models of human motion. In this section we review

key papers contributing to these advances in multiple and single view model-based

pose estimation.

4.3.1 Multiple View 3D Pose Estimation

Up to 2000 the majority of approaches to human pose estimation employed deter-

ministic gradient descent techniques to iteratively estimate changes in pose [77,239].

The extended Kalman filter was widely applied to human tracking with low-order

dynamics used to predict change in pose [311]. Recent work using model-based

analysis-by-synthesis has extended deterministic gradient descent based approach
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to more complex motions. Plänkers and Fua [239] demonstrated upper body track-

ing of arm movements with self-occlusion using stereo and silhouette cues. A lim-

itation of gradient descent approaches is the use of a single pose state estimate

which is updated at each time step. In practice if there is a rapid movement or vi-

sual ambiguities pose estimation may fail catastrophically. To achieve more robust

tracking, techniques which employ a deterministic or stochastic search of the pose

state space have been investigated.

Stochastic tracking techniques, such as theparticle filter, were introduced for ro-

bust visual tracking of objects where sudden changes in movement or cluttered

scenes can result in failure. The principal difficulty with their application to human

pose estimation is the dimensionality of the state space. The number of samples

or particles required increases exponentially with dimensionality. Typically whole-

body human models use 20-30 degrees-of-freedom making direct application of

particle filters computationally prohibitive. MacCormick and Isard [191] proposed

partitioned sampling of the state space for efficient 2D pose estimation of articu-

lated objects such as the hand. However, this approach does not extend directly to

the dimensionality required for whole-body pose estimation. Deutscheret al. [81]

introduced theannealed particle filterwhich combines a deterministic annealing

approach with stochastic sampling to reduce the number of samples required. At

each time step the particle set is refined through a series of annealing cycles with

decreasing temperature to approximate the local maxima in the fitness function. Re-

sults [76,81] demonstrate reconstruction of complex motion such as a hand-stand.

A hierarchal stochastic sampling scheme to efficiently estimate the 3D pose for

complex movements or multiple people is presented in [201]. This approach ini-

tially estimates the torso pose for each person and propagates samples with high

fitness to estimate the pose of adjacent body parts.

Recent work has combined deterministic or stochastic search with gradient descent

for local pose refinement to recover complex whole-body motion. Carranzaet al.

[45] demonstrate whole-body human motion estimation from multiple views com-
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bining a deterministic grid search with gradient descent. Pose estimation is per-

formed hierarchically starting with the torso. For each body part a grid search first

finds the set of valid poses for which the joint positions project inside the observed

silhouettes. A fitness function is then evaluated for all valid poses to determine

the best pose estimate. Finally gradient descent optimization is performed to refine

the estimated pose. This search procedure is made feasible by the use of graphics

hardware to evaluate the fitness function which is based on the overlap between

the projected model and observed silhouette across all views. In related work Kehl

et al. [162] proposestochastic meta descentfor whole-body pose estimation with

24 degrees-of-freedom from multiple views. Stochastic meta descent combines a

stochastic sampling of the set of model points used at each iteration of a gradient

descent algorithm. This introduces a stochastic search element to the optimization

which allows the approach to avoid convergence to local minima. The use of a

small number of samples ( 5) per body part together with adaptive step size allows

efficient performance. Results of these approaches demonstrate reconstruction of

complex movements such as kicking and dancing.

In summary, the introduction of stochastic sampling and search techniques has

achieved whole-body pose estimation of complex movements from multiple views.

Current approaches are limited to gross-body pose estimation of torso, arms and

legs and do not capture detailed movement such as hand-orientation or axial arm

rotation. Multiple hypothesis sampling achieves robust tracking but does not pro-

vide a single temporally consistent motion estimate resulting in jitter which must

be smoothed to obtain visually acceptable results. There remains a substantial gulf

between the accuracy of commercial marker-based and marker less video-based

human motion reconstruction.

4.3.2 Monocular 3D Pose Estimation

Reconstruction of human pose from a single view image sequence is considerably

more difficult than either the problem of 2D pose estimation or 3D pose estima-
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tion from multiple views. To resolve the inherent ambiguity in monocular human

motion reconstruction additional constraints on kinematics and movement are typi-

cally employed [311,36]. Wachter and Nagel [311] used the extended Kalman filter

together with kinematic joint constraints to estimate the 3D motion of a person

walking parallel to the image plane. As discussed in the previous section the use of

a single hypothesis tracking scheme is prone to failure for complex motions. Loyet

al. [187] employ a manual key-frame approach to 3D pose estimation of complex

motion in sports sequences.

Sminchisescu and Triggs [279] have investigated the application of stochastic sam-

pling to estimation of 3D pose from monocular image sequences. They observe that

alternative 3D poses which give good correspondence to the observations are most

likely to occur in the direction of greatest uncertainty. This motivated the introduc-

tion of covariance scaled samplingan extension of particle filters which increases

the covariance in the direction of maximum uncertainty by approximately an or-

der of magnitude to increases the probability of generating samples close to local

minima in the fitness function. Samples are then optimized to find the local minima

using a gradient descent approach. Results demonstrate monocular tracking and 3D

reconstruction of human movements with moderate complexity including walking

with changes in direction. Further research [280] has explicitly enumerated the po-

tential kinematic minima which cause visual ambiguities. Incorportating this in the

sampling process increases efficiency and robustness allowing reconstruction of

more complex human motion from monocular video sequences.

Probabilistic approaches using assemblies of parts together with higher level knowl-

edge of human kinematics and shape have also been investigated for single view 3D

pose estimation. Lee and Cohen [177] combine a probabilistic proposal map rep-

resenting the estimated likelihood of body parts in different 3D locations with an

explicit 3D model to recover the 3D pose from single image frames. A data driven

Markov chain Monte Carlo MCMC is used to search the high-dimensional pose

space. The proposal map for each body part represents the likelihood of the pro-
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jected 3D pose. Proposal distributions are used to efficiently sample the pose space

during MCMC search. Results demonstrate 3D pose estimation from static sports

players in a variety of complex poses. Moeslund and Granum [205,211] apply a

data driven sequential Monte Carlo approach to pose estimation of a human arm.

A part detector provides likely locations of the hand in the image and their uncer-

tainties. This information is applied to correct the prediction lowering the number

of particles required.

Navaratnamet al. [221] combine a hierarchical kinematic model with a bottom up

part detection to recover the 3D upper-body pose. The use of part detection allows

individual body parts to be independently located at each frame. Kinematic con-

straints between body parts are represented hierarchically to recover the 3D pose

from a single view. Unlike previous model free probabilistic assembly of parts this

approach enables recovery of full 3D pose at each frame. Temporal information is

also integrated using a HMM framework to reconstruct temporally coherent move-

ment sequences.

Monocular reconstruction of complex 3D human movement remains an open prob-

lem. Recent research has investigated the use of learnt motion models to provide

strong priors to constrain the search.

4.3.3 Learnt Motion Models

There has been increasing interest in the use of learnt models of human pose and

motion to constrain vision-based reconstruction of human movement from single or

multiple views. The availability of marker-based human motion capture data [1,2,4]

has led to the use of learnt models of human motion for both animation synthesis

in computer graphics and vision-based human motion synthesis.

Learnt models have been developed in computer animation to allow synthesis of

natural motions with user specified constraints from a motion capture database
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[17,168,175,214]. This use of learnt models in computer graphics is relevant to the

problem of vision-based reconstruction of human movement in developing meth-

ods to predict and constrain human pose and motion estimation. Inverse kinematics

of human motion based on learnt models has recently been introduced in com-

puter graphics [112,224]. Onget al. [224] use a learnt model of whole-body con-

figurations to constrain the pose given a set of end effector positions for a motion

sequence. Grochowet al. [112] use Scaled Guassian Process Latent Variable Mod-

els (SGPLVM) to model the probability distribution over all possible whole-body

poses to constrain both character pose in animation and pose reconstruction from

images.

Sidenbladhet al. [270,272,273] combine stochastic sampling with a strong learned

prior of walking motion for tracking. An exemplar based approach is used in [274]

similar to work in motion synthesis [17,168,214] where a database of motion cap-

ture examples is indexed to obtain possible movement directions. Statistical priors

on human appearance and image motion are used [271] to model the likelihood

of observing various image cues for a given movement. These are incorporated

in an analysis-by-synthesis approach to human motion reconstruction. Similarly,

a hierarchical PCA model of human dynamics learnt from motion capture using

a Gaussian mixture and HMM to represent dynamics is proposed for monocular

tracking in [160]. Agarwal and Triggs [7] use a learned model of local second or-

der dynamics for 2D tracking of more general motions walking and running with

transitions and turns in monocular image sequences. Their work demonstrates that

strong priors on human dynamics allows 2D pose estimation for fast movements in

cluttered scenes.

Subsequent research has investigated the use of learnt motion models for 3D mo-

tion reconstruction primarily from monocular image sequences to overcome the

inherent visual ambiguity. In [133] learnt models from short motion sequences are

used to infer 3D pose from tracked image features of simple movements. Sigalet

al. [275] combine body part detectors with a learned motion model to infer 3D hu-
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man pose from monocular images of walking with automatic initialization. Their

approach uses belief propagation via stochastic sampling over a loopy graph of

loosely attached body parts. Urtasun and Fua [303] introduce the use of temporal

motion models learnt from sequences of motion capture data to reconstruct human

motion using a deterministic gradient descent optimization. Principal component

analysis (PCA) is performed on multiple examples of concatenated joint angle se-

quences for walking and running to provide a low-dimensional parametrization.

The parametric motion model is then used to constrain the movement of a 3D hu-

manoid model for walking and running movements with variable speed from stereo

[303] and golf swings from a single view [301]. Urtasunet al. [302] advocate an

alternative approach to representation of human motion using the Scaled Gaussian

Process Latent Variable Model (SGPLVM) to learn a low-dimensional embedding

of the pose state space for specific movements. SGPLVM is used to reconstruct

both golf swings and walking motion from monocular image sequences. Further

research following the methodology of using learnt motion models has addressed

the problem of viewpoint invariance in tracking human movement [8,225].

Research introducing the use of learnt statistical models of human motion since

2000 has demonstrated that using strong motion priors facilitates reconstruction

of 3D pose sequences from monocular images. To date the generality of these ap-

proaches has been limited to specific motion models with relatively small variation

in motion and fixed transitions. A challenge for future research is to build more

general motion models or methods of transitioning between models, to allow the

reconstruction of unconstrained human movement.

5 Recognition

The field of action and activity representation and recognition is relatively old, yet

still immature. This area is presently subject to intense investigation which is also

reflected by the large number of different ideas and approaches. On the other hand,
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the approaches depend on the goal of the researcher and applications for activ-

ity recognition are interesting for surveillance, medical studies and rehabilitation,

robotics, video indexing and animation for film and games. For example, in scene

interpretation the knowledge is often represented statistically and is meant to dis-

tinguish “regular” from “irregular” activities.

The representations should be independent from the objects causing the activity

and thus are usually not meant to distinguish explicitly, e.g, cars from humans. On

the other hand, some surveillance applications focus explicitly on human activities

and the interactions between humans. Here, one finds both, holistic approaches,

that take into account the entire human body without considering particular body

parts, and local approaches. Most holistic approaches attempt to identify “holistic”

information such as gender, identity or simple actions like walking or running.

Researchers using local approaches appear often to be interested in more subtle

actions or attempt to model actions by looking for action primitives with which the

complex actions can be modeled.

We have structured this review according to a visual abstraction hierarchy yielding

the following: scene interpretation(section 5.2) where the entire image is inter-

preted without identifying particular objects or humans,holistic recognition(sec-

tion 5.3) where either the entire human body or individual body parts are applied

for recognition, andaction primitives and grammers(5.5) where an action hierar-

chy gives rise to a semantic description of a scene. Before going into these topics

we first look closer at the definition of the action hierarchy used in this survey since

it has influence on the remaining categories.

5.1 Action Hierarchies

Terms likeactions, activities, complex actions, simple actionsandbehaviorsare

often used interchangingly by the different authors. However, in order to be able
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to describe and compare the different publications we see the need for a common

terminology. In a pioneering work [220], Nagel suggested to use a hierarchy of

change, event, verb, episode, history. An alternative hierarchy (reflecting the com-

putational aspects) is proposed in [31] who suggests to usemovement, activity and

action as different levels of abstraction (see also [11]). Others suggest to also in-

cludesituations[106] or use a hierarchy ofAction primitivesandParent Behaviors

[149].

In this survey we will use the following action hierarchy:action/motor primitives,

actionsandactivities: action primitivesor motor primitiveswill be used for atomic

entities out of which actions are built.Actionsare, in turn, composed intoactivities.

The granularity of the primitives often depends on the application. For example, in

robotics,motor primitivesare often understood as sets of motor control commands

that are used to generate an action by the robot (see section 5.5).

As an example, in tennisaction primitivescould be, e.g., “forehand”, “backhand”,

“run left”, “run right”. The termaction is used for a sequence of action primitives

needed to return a ball. The choice of a particular action depends on whether a fore-

hand, backhand, lob or volley etc, is required in order to be able to return the ball

successfully. Most of the research discussed below fall into this category. Theac-

tivity then is in this example “playing tennis”.Activitiesare larger scale events that

typically depend on the context of the environment, objects or interacting humans.

A good overview of activity recognition is given in [11]. Aggarwal and Park aim

at higher-level understanding of activities and interactions and discuss different

aspect such as level of detail, different human models, recognition approaches and

high-level recognition schemes.
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5.2 Scene Interpretation

Many approaches consider the camera view as a whole and attempt to learn and

recognize activities simply by observing the motion of objects without necessarily

knowing their identity. This is reasonable in situations where the objects are small

enough to be represented as points on a 2D plane.

In [290] a full scene interpretation system is presented which allows detection of

unusual situations. The system extracts features such as 2-D position and speed,

size and binary silhouettes. Vector Quantization is applied to generate a codebook

of K prototypes. Instead of taking the explicit temporal relationship between the

symbols into account, Stauffer and Grimson use co-occurrence statistics.Then, they

define a binary tree structure by recursively defining two probability mass functions

across the prototypes of the code book that best explain the co-occurrence matrix.

The leaf nodes of the binary tree are probability distributions of co-occurrences

across the prototypes and at a higher tree depth define simple scene activities like

pedestrian and car movement. These can then be used for scene interpretation. In

[91] a swimming pool surveillance system is presented. From each of the detected

and tracked objects Enget al. extract features such as speed, posture, submersion

index, an activity index and a splash index. These features are fed into a multivari-

ate polynomial network in order to detect water crisis events. In [33] the problem of

detection irregularities in a scene is approached as a problem of composing newly

observed data using spatio-temporal patches extracted from previously seen visual

examples. Boiman and Irani [33] extract small image and video patches which

are used as local descriptors. In an inference process, they search for patches with

a similar geometric configuration and appearance properties, while allowing for

small local misalignments in their relative geometric arrangement. This way, they

are able to quickly and efficiently infer subtle but important local changes in be-

havior.

In [56,305] activity trajectories are modeled using non-rigid shapes and a dynamic
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model that characterizes the variations in the shape structure. Vaswaniet al. [305]

uses Kendall’s statistical shape theory [163]. Nonlinear dynamical models are used

to characterize the shape variation over time. An activity is recognized if it agrees

with the learned parameters of the shape and associated dynamics. In [55], Chowd-

hury et al. use a subspace method to model activities as a linear combination of

3D basis shapes. The work is based on the factorization theorem [297]. Deviations

from the learned normal activity shapes can be used to identify abnormal ones.

5.3 Holistic Recognition Approaches

The recognition of the identity of a human, based on his/her global body structure

and the global body dynamics is discussed in many publications. Of particular inter-

est for identity recognition has been the human gait. Other approaches using global

body structure and dynamics are concerned with the recognition of simple actions

such as running and walking. Almost all methods are silhouette or contour based.

Subsequent techniques are mostly holistic, e.g., the entire silhouette or contour is

being taken into account without detecting individual body parts.

5.3.1 Human Body Based Recognition of Identity

In [316] the silhouette of a human is computed and then unwrapped by evenly sam-

pling the contour. Next, the distance between each contour point and its center of

gravity is computed. The unwrapped contour is then processed by PCA. To com-

pute the spatio-temporal correlation, Wanget al.compare trajectories in eigenspace

by first applying appropriate time warping to minimize the distance between the

probe and the gallery trajectories. On outdoor data and in spite of its simplicity,

it gives good results while being computationally efficient. In [28] a variation of

co-occurrence techniques is used. After applying a suitable time-warping and nor-

malization with respect to scale a self-similarity plot is computed where silhou-

ette images of the sequences are pairwise correlated. PCA is applied to reduce
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the dimensionality of these plots and ak-nearest neighbor classifier is applied in

eigenspace for recognition.

In [96], silhouettes are extracted, emboxed and normalized. Then, a set of binary

masks are defined and the area of the silhouette within the mask is computed to

give a dynamic signature of the observed person for each mask. A frame rate of

30 fps results in a 30-D vector for each signature giving an × 30 matrix where

n denotes the number of area masks used. To remove the information about the

static shape of the silhouette, the average value of each signature can be subtracted.

Fisher analysis is applied and thek-nearest neighbor classifier is used for clas-

sification. In [154,155], a hidden Markov model is defined to model the dynam-

ics of individual gait. A HMM is trained for each individual in the database. Five

representative binary silhouette are used as the hidden states for which transition

probabilities and observation likelihoods are trained. During the recognition phase,

the HMM with the largest probability identifies the individual. In [324] the rela-

tionship between walking and running is investigated. The Yamet al.define a gait

signature based on a frequency analysis of thigh and lower leg rotations. Phase and

magnitude of the Fourier descriptions are multiplied to give the phase-weighted

magnitude (PWM). It appears that the signatures for walking and running for an

individual is related by a phase modulation. The additional individual relationship

between walking and running is used to derive improved gait-recognition which

can recognize both, walking and running patterns.

5.3.2 Human Body Based Recognition

While a large number of papers recognize individuals based on their dynamics,

the dynamics can also be used to recognizewhat the individual is doing. The ap-

proaches discussed in this subsection are again based on holistic body information

where no attempt is made to identify individual body parts.

A pioneering work in this context has been presented by Efroset al. [85]. They
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attempt to recognize simple actions of people whose images in the video are only

30 pixels tall and where the video quality is poor. They use a set of features that are

based on blurred optic flow (blurred motion channels). First, the person is tracked so

that the image is stabilized in the middle of a tracking window. The blurred motion

channels are computed on the residual motion that is due to the motion of the body

parts. Spatio-temporal cross-correlation is used for matching with a database. Of

further interest is the “Do-as-I-Say” enhancement where complex actions can be

dynamically composed out of the set of simple actions. In [258] Robertson and Reid

attempt tounderstandactions by building a hierarchical system that is based on

reasoning with belief networks and hidden Markov models on the highest level and

on the lowest level with features such as position and velocity as action descriptors.

Their action descriptor is based on [85]. The system is able to output qualitative

information such aswalking – left-to-right – on the sidewalk.

A large number of publications work with space-time volumes. One of the main ap-

proaches is to use spatio-temporalXT -slices from an image volumeXY T [252,253]

where articulated motions of a human can be associated with a typical trajectory

pattern. In [252] it is demonstrated howXT -slices can facilitate tracking and re-

construction of 2D motion trajectories. The reconstructed trajectory allows a simple

classification between pedestrians and vehicles. In [253], Ritscheret al.discuss the

recognition in more detail by a closer investigation of theXT -slices. Quantifying

the braided pattern in the slices of the spatio-temporal cube gives rise to a set of

features (one for each slice) and their distribution is used to classify the actions.

Bobick and Davis pioneered the idea of temporal templates [31,32]. They propose a

representation and recognition theory [31,32] that is based onmotion energy images

(MEI) andmotion history images(MHI). The MEI is a binary cumulative motion

image. The MHI is an enhancement of the MEI where the pixel intensities are a

function of the motion history at that pixel. Matching temporal templates is based

on Hu moments. Bradskiet al. [34] pick up the idea of MHI and develop timed

MHI (tMHI) for motion segmentation. tMHI allow determination of the normal
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optical flow. Motion is segmented relative to object boundaries and the motion

orientation. Hu moments are applied to the binary silhouette to recognize the pose.

A work conceptually related to [32] is [192]. Here, motion information for each

video frame is represented by a feature image. However, unlike [32], an action is

represented by several feature images. PCA is applied for dimensionality reduction

and each action is then represented by a manifold in PCA space.

Yi et al. [330] present the idea of a pixel change ratio map (PCRM) which is con-

ceptually similar to the MHI. However, further processing is based on motion his-

tograms which are computed from the PCRM. In [318], Weinberget al. suggest

replacing the motion history image by a 4D motion history volume. For this, they

first compute the visual hull from multiple cameras. Then, they consider the vari-

ations around the central vertical axes and use cylindric coordinates to compute

alignments and comparisons. Motion history images can also be used to detect and

interpret actions in compressed video data. In [20] a motion flow history (MFH) is

computed from the motion data available in compressed video. In addition to MFH,

they also use motion history images to classify activities.

As the search of activities in large databases gains importance, a full, hierarchi-

cal human detection system is presented in [228]. In their system, Ozer and Wolf

approach the tracking, pose estimation and action recognition problem in an inte-

grated manner. They apply a number of well-known techniques on (un)compressed

video data.

Another approach is that of “Actions Sketches” or “Space-Time Shapes” in the

3D XYT volume. Yilmaz and Shah [331] propose to use spatio-temporal volumes

(STV) for action recognition: The 3D contour of a person gives rise to a 2D pro-

jection. Considering this projection over time defines the STV. Yilmaz and Shah

extract information such as speed, direction and shape by analyzing the differen-

tial geometric properties of the STV. They approach action recognition as an object

matching task by interpreting the STV as rigid 3D objects. In [30] Blanket al.also
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analyze the STV. They generalize techniques for the analysis of 2D shapes [108]

for the use on the STV. Blanket al.argue that the time domain introduces proper-

ties that do not exist in thexy-domain and needs thus a different treatment. For the

analysis of the STV they utilize properties of the solution of the Poisson equation

[108]. This gives rise to local and global descriptors that are used for recognizing

simple actions.

Instead of using spatio-temporal volumes, a large number of papers choose the

more classical approach of considering sequences of silhouettes. In [333] silhou-

ettes are extracted and their contours are unwrapped and processed by PCA. A

three-layer feed forward network is used to distinguish “walking”, “running”and

“other” based on the trajectories in eigenspace. The work in [264] is concerned

with the detection of interaction between two individuals. This is done by grouping

foreground pixels according to similar velocities. A subsequent tracker tracks the

velocity blobs. The distance between two people, the slope of relative distance and

the slope of each person’s position are the features used for interaction detection

and classification. In [50], walking is distinguished from running based on sport

event video data. The data comes from real-life programs. Chenget al. compute

a dense motion field and foreground segmentation is performed based on color

and motion. Within the foreground region, the mean motion magnitude between

frames is computed over time followed by an analysis in frequency space to com-

pute a characteristic frequency. A Gaussian classifier is used for classification. Gao

et al. [98] consider a smart room application. A dining room activity analysis is

performed by combining motion segmentation with tracking. They use motion seg-

mentation based on optical flow and RANSAC. Then, they combine the motion

segmentation with a tracking approach which is sensitive to subtle motion. In order

to identify activities, they identify predominant directions of relative movements.

In a number of publications, recognition is based on hidden Markov models (HMMs)

and dynamic Bayes networks. Elgammalet al. [89] propose a variant of semi-

continuous HMMs for learning gesture dynamics. They represent the observation
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function of the HMM as non-parametric distributions to be able to relate a large

number of exemplars to a small set of states. Luoet al. [189] present a scheme for

video analysis and interpretation where the higher-level knowledge and the spatio-

temporal semantics of objects are encoded with DBNs. The DBNs are based on

key-frames and are defined for video objects. In [181], Leoet al. attempt to clas-

sify actions at an archaeological site. They present a system that uses binary patches

and an unsupervised clustering algorithm to detect human body postures. A discrete

hidden Markov model is used to classify the sequences of poses into a set of four

different actions.

5.4 Recognition based on Body Parts

Many authors are concerned with the recognition of actions based on the dynamics

and settings of individual body parts. Some approaches, e.g., [74], start out with

silhouettes and detect the body parts using a method inspired by the W4-system

[121]. Others use 3D-model based body tracking approaches (see section 4) where

the recognition of (often periodic) action is used as a loop-back to support pose

estimation. Other approaches circumvent the vision problem by using a motion

capture system in order to be able to focus on the action issues [230,72].

In a work related to [316], Wanget al. [315] present an approach where contours

are extracted and a mean contour is computed to represent the static contour infor-

mation. Dynamic information is extracted by using a detailed model composed of

14 rigid body parts, each one represented by a truncated cone. Particle filtering is

used to compute the likelihood of a pose given an input image. For classification, a

nearest neighbor classifier (NN) was used.

In [74] an approach is presented to distinguish walking from non-walking. A method

based on the W4-system is used to detect body parts from silhouettes. Based on

the feet locations four motion properties are extracted of which three (cycle time,
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stance/swing ratio, double support time) reflect dynamic features and one (exten-

sion angle) reflects a structural feature. The walking category is defined by three

pairs of the dynamic features and the structural feature. In a similar approach [248]

Ren and Xu use as input a binary silhouette from which they detect the head,

torso, hands and elbow angles. Then, a primitive-based coupled hidden Markov

model is used to recognize natural complex and predefined actions. They extend

their work in [249] by introducing primitive-based dynamic Bayesian networks.

In [230], Parameswaran and Chellappa consider the problem of view-invariant ac-

tion recognition based on point-light displays by investigating 2D and 3D invariant

theory. As no general, non-trivial 3D-2D invariants exist, Parameswaran and Chel-

lappa employ a convenient 2D invariant representation by decomposing and com-

bining the patches of a 3D scene. For example, key poses can be identifies where

joints in the different poses are aligned. In the 3D case, six-tuples corresponding to

six joints give rise to 3D invariant values and it is suggested to use the progression

of these invariants over time for action representation. A similar issue is discussed

in [332] where joint trajectories from several uncalibrated moving cameras are con-

sidered. Yilmaz and Shah propose an extension to the standard epipolar geometry

based approach by introducing a temporal fundamental matrix that models the ef-

fects of the camera motion. The recognition problem is then approached in terms

of the quality of the recovered scene geometry.

In [72,70], Davis and Gao aim is to recognize properties from visual target cues,

e.g. the sex of an individual or the weight of a carried object is estimated from how

the individuals move. In [72] the gender of a person is recognized based on the

gait. Labeled 2D trajectories from motion capture devices of humans are factored

using three-mode PCA into components interpreted asposture, timeandgender. An

importance weight for each of the trajectories is learned automatically. In [70] the

three-mode PCA framework is used to recognize human action efforts. Here, the

three modespose, timeandeffort are used. In order to detect particular body parts

Fantiet al.[92] give the structure of a human as model knowledge. To find the most
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likely model alignment with input data they exploit appearance information which

remains approximately invariant within the same setting. Expectation maximization

is used for unsupervised learning of the parameters and structure of the model for a

particular action and unlabeled input data. Action is then recognized by maximum

likelihood estimation.

5.5 Action Primitives and Grammars

There is strong neurobiological evidence that human actions and activities are di-

rectly connected to the motor control of the human body [255,102,254]. When

viewing other agents performing an action, the human visual system seems to re-

late the visual input to a sequence of motor primitives. The neurobiological repre-

sentation for visually perceived, learned and recognized actions appears to be the

same as the one used to drive the motor control of the body. These findings have

gained considerable attention from the robotics community [265,68]. Inimitation

learning the goal is to develop a robot system that is able to relate perceived ac-

tions to its own motor control in order to learn and to later recognize and perform

the demonstrated actions. Consequently, it is ongoing research to identify a set of

motor primitives that allow a) representation of the visually perceived action and

b) motor control for imitation. In addition, this gives rise to the idea of interpret-

ing and recognizing activities in a video scene through a hierarchy of primitives,

simple actions and activities. Most of the following researchers attempt to learn the

motor or action primitives by defining a “suitable” representation and then learning

the primitives from demonstrations. The representations used to describe the prim-

itives vary a lot across the literature and are subject to ongoing research. Most of

the subsequently mentioned work is based on motion capture data.

In [151,150], Jenkinset al. suggest applying a spatio-temporal non-linear dimen-

sion reduction technique on manually segmented human motion capture data. Sim-

ilar segments are clustered into primitive units which are generalized into parame-
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terized primitives by interpolating between them. In the same manner, they define

action units (“behavior units”) which can be generalized into actions. In [141] the

problem of defining motor primitives is approached from the motor side. They de-

fine a set of nonlinear differential equations that form a control policy (CP) and

quantify how well different trajectories can be fitted with these CPs. The parame-

ters of a CP for a primitive movement are learned in a training phase. These pa-

rameters are also used to compute similarities between movements. In [43,29,42] a

HMM based approach is used to learn characteristic features of repetitively demon-

strated movements. They suggest to use the HMM to synthesize joint trajectories

of a robot. For each joint, one HMM is used. In [43] an additional HMM is used to

model end-effector movement. In these approaches, the HMM structure is heavily

constrained to assure convergence to a model that can be used for synthesizing joint

trajectories.

A number of publications attempt to decouple actions into action primitives and to

interpret actions as a composition on the alphabet of these action primitives, how-

ever, without the constraints of having to drive a motor controller with the same

representation. In [306], Vecchio and Perona employ techniques from the dynami-

cal systems framework to approach segmentation and classification. System iden-

tification techniques are used to derive analytical error analysis and performance

estimates. Once, the primitives are detected an iterative approach is used to find the

sequence of primitives for a novel action. In [188], Luet al.also approach the prob-

lem from a system theoretic point of view. Their goal is to segment and represent

repetitive movements. For this, they model the joint data over time with a second

order auto-regressive (AR) model and the segmentation problem is approached by

detection significant changes of the dynamical parameters. Then, for each motion

segment and for each joint, they model the motion with a damped harmonic model.

In order to compare actions, a metric based on the dynamic model parameters is de-

fined. A different problem is studied in [313] addressing what kind of cost function

should be used to assure smooth transitions between primitives.
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While most scientists concentrate on the action representation by circumventing the

vision problem, [246] takes a vision-based approach. They propose a view-invariant

representation of action based ondynamic instantsandintervals. Dynamic instants

are used as primitives of actions which are computed from discontinuities of 2D

hand trajectories. An interval represents the time period between two dynamic in-

stants (key poses). A similar approach of using meaningful instants in time is pro-

posed by Renget al. [251] where key poses are found based on the curvature and

covariance of the normalized trajectories. In [64] key poses are found through eval-

uation of antieigenvalues.

In [106] the point distribution model [60] is employed to model the variability of

joint angle settings of a stick figure model. An action spaces,aSpace, is trained by

giving a set of joint angle settings coming from different individuals but showing

the same action.aSpacesare then used for synthesis and recognition of known ac-

tions. Modelling of activities on a semantic level has been attempted in [233]. The

system that Park and Aggarwal describe has 3 abstraction levels. At the first level,

human body parts are detected using a Bayesian network. At the second level, dy-

namic Bayes nets are used to model the actions of a single person. At the highest

level, the results from the second level are used to identify the interactions between

individuals. Ivanov and Bobick [145] suggest using stochastic parsing for a seman-

tic representation of an action. They discuss that for some activities, where it comes

to semantic or temporal ambiguities or insufficient data, stochastic approaches may

be insufficient to model complex actions and activities. They suggest decoupling

actions into primitive components and using a stochastic parser for recognition. In

[145] they pick up a work by Stolcke [291] on syntactic parsing in speech recog-

nition and enhance this work for activity recognition in video data. A somewhat

different approach is taken in [334]. Yu and Yang use neural networks to find prim-

itives. They apply self-organizing maps (SOMs, Kohonen’s feature maps) which

cluster the training images based on shape feature data. After training the SOMs

generated a label for each input image which converts an input image sequence
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into a sequence of labels. A subsequent clustering algorithm allows to find repeat-

edly appearing substructures in these label sequences. These substructures are then

interpreted as motion primitives.

6 Conclusion

Over the past five years vision-based human motion estimation and analysis has

continued to be a thriving area of research. This survey has identified over two-

hundred related publications over the period 2000-06 in major conferences and

journals. Increased activity in this research area has been driven by both the sci-

entific challenge of automatic scene interpretation and the demands of potential

mass-market applications in surveillance, entertainment production and indexing

visual media.

During this period there has been substantial progress towards automatic human

motion tracking and reconstruction. Recognition of human motion has also become

a central focus of research interest. Key advances identified in this review include:

Initialization: Automatic initialization of model shape, appearance and pose has

been addressed in recent work [51,197]. A major advance is the introduction of

methods for pose detection from static images [136,250,260,267] which poten-

tially provide automatic initialization for human motion reconstruction.

Tracking: Surveillance applications have motivated research advances towards

reliable tracking of multiple people in unstructured outdoor scenes. Advances

in especially the use of appearance, shape and motion for figure-ground seg-

mentation have increased reliability of detecting and tracking people with par-

tial occlusion [203,223,261,325,134,165,232]. Probabilistic classification meth-

ods [193,165,232,235] and stochastic sampling [134,240,223,340,325,281] have

been introduced to improve the reliability of temporal correspondence during oc-

clusion. Systems for self-calibrating and tracking across multiple cameras have
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been investigated [164,18,158,300]. There remains a gap between the state-of-

the-art and robust tracking of people for surveillance in outdoor scenes.

Human motion reconstruction from multiple views: Significant progress has

been made towards the goal of automatic reconstruction of human movement

from video. The model-based analysis-by-synthesis methodology, pioneered in

early work [129], has been extended with the introduction of techniques to effi-

ciently search the space of possible pose configurations for robust reconstruction

from multiple view video acquisition [45,81,197,162]. Current approaches cap-

ture gross body movement but do not accurately reconstruct fine detail such as

hand movements or axial rotations.

Monocular human motion reconstruction: Progress has also been made to-

wards human motion capture from single views with stochastic sampling tech-

niques [177,221,270,279]. An increasing trend in monocular tracking has been

the use of learnt motion models to constrain reconstruction based on movement

[7,270,272,303,302,8]. Research has demonstrated that the use of strong a priori

models enables improved monocular tracking of specific movements.

Pose estimation in natural scenes:A recent trend to overcome limitations of

monocular tracking in video of unstructured scenes has been direct pose detec-

tion on individual frames. Probabilistic assemblies of parts based on robust body

part detection has achieved 2D pose estimation in challenging cluttered scenes

such as film footage [136,195,199,245,250,259]. Example based methods which

learn a mapping from image to 3D pose space have been presented for recon-

struction of specific movements [8,260,267].

Recognition:Understanding behavior and action has recently seen an explosion

of research interest. Considerable steps have been made to advance surveillance

applications towards automatic detection of unusual activities. Progress can also

be seen for the recognition of simple actions and the description of action gram-

mars. Relatively few papers have so far dealt with higher abstraction levels in

action grammars which touch the border of semantics and AI. Association of ac-

tions and activities with affordances of objects will also bring a new perspective
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to object recognition.

Future research in visual analysis of human movement must address a number of

open problems to satisfy the common requirements of potential applications for

reliable automatic tracking, reconstruction and recognition. Body part detectors

which are invariant to viewpoint, body shape and clothing are required to achieve

reliable tracking and pose estimation in cluttered natural scenes. The use of learnt

models of pose and motion are currently restricted to specific movements. More

general models are required to provide constraints for capturing a wide range of

human movement. Whilst there has been substantial advances in human motion

reconstruction the visual understanding of human behavior and action remains im-

mature despite a surge of recent interest. Progress in this area requires fundamental

advances in behavior representation for dynamic scenes, viewpoint invariant re-

lationships for movement and higher level reasoning for interpretation of actions

[266].

Industrial applications also require specific advances: human motion capture for en-

tertainment production requires accurate multiple view reconstruction; surveillance

applications require both reliable detection of people and recognition of movement

and behavior from relatively low quality imagery; human-computer interfaces re-

quire low-latency real-time recognition of gestures, actions and natural behaviors.

The potential of these applications will continue to inspire the advances required to

realize reliable visual capture and analysis of moving people.
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Table 1
Publications on human motion capture and analysis from 2000-2006(inclusive). Papers are
ordered first by the year of publication and second by the surname of the first author. Four
columns allow the clarification of the contributions of the papers within the four processes.
The location of the reference number (in brackets) indicates the main topic of the work and
an asterisk (*) indicates that the paper also describes work at an interesting level regarding
this process.

Publications 2000 - 2006 (inclusive).
Year First author Initialisation Tracking Pose estimation Recognition
2000 Barron [22]
2000 Buades [38]
2000 Chang * [48] *
2000 Davis [75]
2000 Deutscher * [81]
2000 Felzenszwalb [93]
2000 Haritaoglu * [121] * *
2000 Howe * [133]
2000 Ivanov * [146]
2000 Karaulova * * [160]
2000 Khan * [165]
2000 Ormoneit [227] * *
2000 Ricquebourg [252] *
2000 Stauffer * [290]
2000 Takahashi [293] *
2000 Taylor [294] *
2000 Trivedi [298]
2000 Trivedi * [299]
2000 Zhao [338]∑

Total=19 2 7 8 2
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Year First author Initialisation Tracking Pose estimation Recognition
2001 Ambrosio [14]
2001 Ambrosio [15]
2001 Barron [23]
2001 Bobick [32]
2001 Bradski * * [34]
2001 Choo [54]
2001 Davison [76]
2001 Delamarre * [77]
2001 Deutscher [82]
2001 Elgammal * [90]
2001 Grammalidis * [109]
2001 Gutchess [114]
2001 Haritaoglu * [117]
2001 Herda * * [124]
2001 Hoshino * [131]
2001 Huang * [137]
2001 Intille [142]
2001 Ioffe * [144]
2001 Khan [164]
2001 Li [182]
2001 Mikíc * * [198]
2001 Moeslund * * [207]
2001 Mohan [213]
2001 Moon * [216]
2001 Ogaki * [222]
2001 Pece * [234]
2001 Pl̈ankers * [237]
2001 Prati [242]
2001 Rosales * [244]
2001 Sangi [263]
2001 Sato [264] *
2001 Sidenbladh * * [270]
2001 Sminchisescu * [278]
2001 Song [283]
2001 Song [284]
2001 Zhao [341] *∑

Total=36 1 9 22 4
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Year First author Initialisation Tracking Pose estimation Recognition
2002 Allen [12]
2002 Atsushi [18]
2002 Ben-Arie * * [27]
2002 BenAbdelkader * [28]
2002 Bradski * [34]
2002 Cheng * [50]
2002 Davis * * [74]
2002 Fua * [97]
2002 Gleicher [103]
2002 Gonz̀alez [106]
2002 Halvorsen * [115]
2002 Hariadi [116]
2002 Haritaoglu [118] *
2002 Herda * [127]
2002 Huang * [140]
2002 Ijspeert [141]
2002 Jang [148] *
2002 Jenkins [149]
2002 Jenkins [150]
2002 Jenkins [151]
2002 Lee * * [179]
2002 Li * [183]
2002 Metaxas [194]
2002 Mikíc * * [196]
2002 Mittal [202]
2002 Moeslund [212] * *
2002 Montemerlo [215]
2002 Ozer [228] * *
2002 Park [232] *
2002 Pece [235] *
2002 Pers [236]
2002 Pl̈ankers * [238]
2002 Rao * * [246]
2002 Ren * * [248]
2002 Rittscher * * * [253]
2002 Roberts * [256]
2002 Ronfard [259]
2002 Sidenbladh * [273]
2002 Sminchisescu * [276]
2002 Starck [286]
2002 Theobalt * * [296]
2002 Utsumi * [304]
2002 Yam * [324]
2002 Zhao [339]∑

Total=44 4 12 14 14
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Year First author Initialisation Tracking Pose estimation Recognition
2003 Allen [13]
2003 Azoz * [19]
2003 Babu [20]
2003 Barron [24] *
2003 Buxton [40]
2003 Capellades [44] *
2003 Carranza * * [45]
2003 Cheung * * [51]
2003 Chowdhury [56]
2003 Chu * [57]
2003 Comaniciu [59]
2003 Cucchiara [61]
2003 Davis [70]
2003 Demirdjian * [78]
2003 Demirdjian * [80]
2003 Efros [85]
2003 Elgammal [86]
2003 Elgammal [87]
2003 Elgammal [89]
2003 Eng [91] *
2003 Foster * [96]
2003 Gerard * [100]
2003 Gonzalez [107] *
2003 Herda * [123]
2003 Koschan [167]
2003 Krahnstoever [170] * *
2003 Liebowitz * [184]
2003 Masoud [192]
2003 Mikic * * [197]
2003 Mitchelson [200]
2003 Mitchelson * [201]
2003 Mittal [203]
2003 Moeslund * * [204]
2003 Moeslund * [208]
2003 Moeslund * [209]
2003 Parameswaran [230]
2003 Pl̈ankers * [239]
2003 Polat [240]
2003 Prati [243]
2003 Shah [266] * *
2003 Shakhnarovich [267]
2003 Sidenbladh * [271] *
2003 Sminchisescu * [279]
2003 Sminchisescu * [280]
2003 Song [285] * *
2003 Starck [287] *
2003 Sẗorring [292]
2003 Vasvani [305]
2003 Vecchio [306]
2003 Viola [308]
2003 Wang [313]
2003 Wang [314] * *
2003 Wang * * [315]
2003 Wang * [316]
2003 Wang [317]
2003 Wu [322]
2003 Yang [326]∑

Total=58 5 18 20 15
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Year First author Initialisation Tracking Pose estimation Recognition
2004 Agarwal [6]
2004 Agarwal * [7]
2004 Agarwal [11]
2004 Billard [29]
2004 Bregler [36]
2004 Brostow [37]
2004 Calinon [42]
2004 Cucchiara [62]
2004 Date [69]
2004 Davis [72]
2004 Davis [73]
2004 Demirdjian [79]
2004 Elgammal [88]
2004 Figueroa [94]
2004 Gao [98] *
2004 Giebel [101]
2004 Gonzalez [105]
2004 Grauman [110]
2004 Hayashi [122]
2004 Herda [125]
2004 Howe * [132]
2004 Hu [134]
2004 Hu [135] * *
2004 Huang * * [138] *
2004 Iwase [147]
2004 Junejo * [153]
2004 Kang [157] *
2004 Krahnstoever [169] *
2004 Lee * * [176]
2004 Lee [177]
2004 Lee * * [178]
2004 Leo [181]
2004 Loy [187]
2004 Lu [188]
2004 Lv * [190]
2004 Mikolajczyk * [199]
2004 Moeslund * [210]
2004 Mori [217]
2004 Murakita [219]
2004 Okuma [223]
2004 Pan [229]
2004 Parameswaran [231] *
2004 Park [233]
2004 Porikli [241]
2004 Remondino [247]
2004 Ren [249]
2004 Roberts [257]
2004 Sidenbladh * [269]
2004 Sigal [275]
2004 Thalmann [295]
2004 Urtasun * [303]
2004 Yang [327]
2004 Yang [328]
2004 Yi [330]
2004 Yu [334]
2004 Zhao [340]∑

Total=56 5 16 21 14
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Year First author Initialisation Tracking Pose estimation Recognition
2005 Andersen [16]
2005 Balan [21]
2005 Beleznai [25]
2005 Blank [30]
2005 Boiman [33]
2005 Bullock * * [39] *
2005 Calinon [43]
2005 Chalidabhongse [47]
2005 Chen * [49]
2005 Cheung * [52]
2005 Cucchiara * [63]
2005 Curio [65]
2005 Dahmane [66] *
2005 Dalal [67]
2005 Deutscher [83]
2005 Dimitrijevic [84] *
2005 Fanti * [92]
2005 Guha [113]
2005 Herda [126] *
2005 Kang [158]
2005 Kang [159]
2005 Ke [161]
2005 Kehl [162]
2005 Kim [166]
2005 Krosshaug [171]
2005 Kruger * [172]
2005 Kumar [173] * *
2005 Lee [174]
2005 Leibe [180]
2005 Lim [185]
2005 Micilotta [195]
2005 Moeslund * * [205]
2005 Moeslund [211] * *
2005 Mulligan * [218]
2005 Navaratnam [221]
2005 Ong [225]
2005 Ormoneit [226]
2005 Ramanan * [245]
2005 Ren [250]
2005 Robertson [258]
2005 Roth [261]
2005 Sanfeliu [262]
2005 Sheikh [268]
2005 Sminchisescu [277]
2005 Smith [281]
2005 Smith [282]
2005 Starck * * [288]
2005 Ukita [300]
2005 Urtasun * [301]
2005 Urtasun * [302]
2005 Viola [309]
2005 Wang * [312]
2005 Weinberg [318]
2005 Wu * [320]
2005 Wu [321]
2005 Xu [323]
2005 Yang [325]
2005 Yang [329]
2005 Yilmaz [331]
2005 Yilmaz [332]
2005 Yu * [333]
2005 Zhang [335]
2005 Zhao [336]
2005 Zhao [337]∑

Total=64 4 26 21 13
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Year First author Initialisation Tracking Pose estimation Recognition
2006 Agarwal * [8]
2006 Cuntoor [64]
2006 Reng [251]∑

Total=3 0 0 1 2

00-06 Total= 280 21 88 107 64
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