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Abstract This paper presents a performance evaluation of
shape similarity metrics for 3D video sequences of peo-
ple with unknown temporal correspondence. Performance
of similarity measures is compared by evaluating Receiver
Operator Characteristics for classification against ground-
truth for a comprehensive database of synthetic 3D video
sequences comprising animations of fourteen people per-
forming twenty-eight motions. Static shape similarity met-
rics shape distribution, spin image, shape histogram and
spherical harmonics are evaluated using optimal parame-
ter settings for each approach. Shape histograms with vol-
ume sampling are found to consistently give the best per-
formance for different people and motions. Static shape
similarity is extended over time to eliminate the temporal
ambiguity. Time-filtering of the static shape similarity to-
gether with two novel shape-flow descriptors are evaluated
against temporal ground-truth. This evaluation demonstrates
that shape-flow with a multi-frame alignment of motion se-
quences achieves the best performance, is stable for different
people and motions, and overcome the ambiguity in static
shape similarity. Time-filtering of the static shape histogram
similarity measure with a fixed window size achieves mar-
ginally lower performance for linear motions with the same
computational cost as static shape descriptors. Performance
of the temporal shape descriptors is validated for real 3D
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video sequence of nine actors performing a variety of move-
ments. Time-filtered shape histograms are shown to reliably
identify frames from 3D video sequences with similar shape
and motion for people with loose clothing and complex mo-
tion.
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1 Introduction

Three-dimensional (3D) shape matching has been widely in-
vestigated (Bustos et al. 2007; Del Bimbo and Pala 2006;
Iyer et al. 2005; Tangelder and Veltkamp 2004) as a means
of effective and efficient object retrieval. However, shape
matching techniques typically only consider a single static
shape and are designed to classify objects from different
classes. In this paper we consider the problem of 3D shape
matching in temporal sequences where the goal is to dis-
criminate between the same object in different poses rather
than different classes of objects.

Multiple view reconstruction of human performance as a
3D video sequence has received considerable interest over
the past decade following the pioneering work of Kanade
et al. (1997). This research has advanced to the stage of
capturing detailed non-rigid dynamic surface shape of the
body, clothing and hair during motion (Aguiar et al. 2008;
Vlasic et al. 2008; Starck and Hilton 2007; Theobalt et
al. 2007). Acquisition results in an unstructured volumet-
ric or mesh approximation of the surface shape at each
frame without temporal correspondence. Recent research
has introduced data-driven animation synthesis where sub-
sequences of captured motions are concatenated to construct
highly-realistic animated content (Huang and Hilton 2009;
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Starck and Hilton 2007; Xu et al. 2006; Starck et al. 2005).
This requires a measure of temporal shape similarity to iden-
tify possible intra and inter sequence transitions which are
suitable for concatenation without unnatural intermediate
motion.

Previous research in concatenative synthesis of human
motion has considered only the similarity in pose of the
human skeleton (Arikan et al. 2003; Kovar et al. 2002;
Lee et al. 2002). This does not account for surface shape de-
formations in clothing and hair. Surface similarity has been
defined either manually (Starck and Hilton 2007; Starck et
al. 2005) or through a shape descriptor (Xu et al. 2006). Sim-
ilarity requires a shape descriptor that is sufficiently distinct
to differentiate articulated pose and motion while tolerant to
changes in surface topology for similar poses.

In this paper we review and compare current techniques
from the shape retrieval literature for the problem of human
surface shape similarity which we call static shape matching
and extend them to the spatio-temporal domain which we
call temporal shape matching. This paper extends the evalu-
ation of static (Huang et al. 2007a) and temporal (Huang et
al. 2007b) shape descriptors for 3D video sequences of peo-
ple from individual sequences to a comprehensive corpus of
both synthetic and real data for different people, motions and
clothing. Shape descriptors are evaluated for matching shape
and motion against known ground-truth on synthetic 3D
video sequences for animated models of 14 people each per-
forming 28 different motions giving a total of 40K frames.
Comparison is made between local feature distribution tech-
niques including: Shape Distribution (Osada et al. 2002),
Spin Image (Johnson and Hebert 1999), Shape Histogram
(Ankerst et al. 1999) and Spherical Harmonics (Kazhdan et
al. 2003) assuming unknown correspondence. These tech-
niques are extended to the spatio-temporal domain by ap-
plying a temporal filter and 4D shape-flow. Performance is
evaluated by comparing the Receiver Operating Character-
istic (ROC) showing the trade-off between correctly and in-
correctly classified similarity. This comparison for a wide
variety of people and movements validates the previous ob-
servation for a single person (Huang et al. 2007b) that the
best performance for static shape matching is achieved by a
volume-based shape histogram descriptor.

Novel temporal shape-flow descriptors are introduced ex-
tending the volume-based Shape Histogram descriptor to the
temporal domain. Evaluation of the novel shape-flow de-
scriptors against ground-truth demonstrates improved per-
formance over previous static shape descriptors and time-
filtered shape descriptors with consistent classification for
3D video sequences of different people with a wide vari-
ety of movement, body-shape and clothing. Temporal shape
matching is demonstrated on real 3D video sequences of 9
people each performing 6–10 different motions from a pub-
lic data base (Starck and Hilton 2007) with a total of 5K

frames. Real sequences include a variety of loose and tight
fitting clothing together with long sequences of complex
motions from a street dancer (Fig. 1). Results demonstrate
that the proposed temporal shape descriptor correctly iden-
tifies 3D video frames with similar shape and motion.

2 Related Work

The problem of shape similarity has been widely studied
in the 3D shape retrieval literature. These descriptors aim
to discriminate between rigid shapes for different object
classes (book, mug, chair) and inter-class variations (cars,
chairs). This paper focuses on shape descriptors to discrimi-
nate between instances from sequences of the same moving
non-rigid object, a person, which differ in both shape and
motion. The temporal shape descriptor extends previous ap-
proaches for measuring static shape similarity to temporal
shape sequences. In this section we first review static shape
matching techniques followed by approaches related to tem-
poral matching of both human skeletal motion and shape
sequences.

2.1 Static Shape Matching

Global features are used to characterise the overall shape of
3D models. Typical global features include: volume, surface
area, moments, Fourier and Wavelet coefficients. Zhang and
Chen (2001) propose an algorithm to efficiently calculate
these global features of a 3D model directly from a surface
mesh representation. Paquet (2000) provide three global
feature-based descriptors for 3D shape matching, a cord-
based descriptor, moment-based descriptor and wavelet-
based descriptor. Corney et al. (2002) use three convex-hull
based indices hull crumpliness, hull packing and hull com-
pactness for coarsely filtering candidates prior to a more de-
tailed analysis. Kazhdan et al. (2002) present a reflective
symmetry descriptor that extracts the global symmetry in-
formation. Such global features are relatively simple to com-
pute but do not provide discrimination at a local level.

Local features can give a more distinctive similarity mea-
sure. Shum et al. (1996) define similarity as the L2 distance
between the local curvature distribution over the mesh rep-
resentation for two 3D objects. Zaharia and Preteux (2001)
present the 3D Shape Spectrum Descriptor (3D SSD), which
is defined as the distribution of a shape index over the entire
mesh, to provide an intrinsic shape description of a 3D mesh.
Chua and Jarvis (1997) provide a point signature to describe
3D free-form surfaces that is invariant to rotation and trans-
lation. Johnson and Hebert (1999) present a 3D shape-based
object recognition system using Spin Images. These features
provide local shape information to improve discrimination
between similar shapes.
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Fig. 1 Example frames from 3D video sequences of two people performing a variety of movements with different clothing

Local features are compared using a descriptor of the
feature distribution. Osada et al. (2002) introduced a Shape
Distribution as a signature to discriminate similar and dis-
similar models. A Similarity Measure is computed as the
difference between Shape Distributions, which is invariant
to translation, rotation and tessellation of the 3D polygo-
nal model. Ankerst et al. (1999) use a 3D Shape Histogram
as a shape signature to classify a molecular database. Kört-
gen et al. (2003) attach a 3D Shape Context descriptor to
each surface sample point. Shape Context was introduced
by Belongie et al. (2002) for 2D matching. Ohbuchi et al.
(2003) introduce two further shape descriptors, Angle Dis-
tance (AD) and Absolute Angle Distance (AAD) histograms
for 3D matching.

Another popular approach is a transform-based represen-
tation which describes shapes in a transformation invariant
manner. Kazhdan et al. (2003) propose Spherical Harmonic
Descriptors that are invariant to rotation for 3D shape re-
trieval. However, the representation has a potential ambigu-
ity problem. The frequency decomposition is performed in-
dependently in concentric spheres, such that two different
shapes can have the same spherical harmonic representa-
tion. Novotni and Klein (2003) use 3D Zernike Descriptors

for 3D shape retrieval, which is an extension of the Spher-
ical Harmonic Representation. A set of descriptors is ob-
tained that are orthonormal, complete and rotation invariant.
However, 3D Zernike Descriptors suffer the same ambiguity
problem.

In the CAD industry, the most common used graph-based
representations are Boundary Representation (B-rep) and
Constructive Solid Geometry (CSG). El-Mehalawi (2003)
construct an attributed graph from a B-rep and measure sim-
ilarity by using an inexact graph matching algorithm. Sim-
ilarly, Mcwherter et al. (2001) compare models based on
shape using information extracted from B-rep into Model
Signature Graphs. However, these methods are limited to
the CAD community, for example, in matching mechanical
parts, and cannot apply to commonly used 3D mesh repre-
sentations. Sundar et al. (2003) use a skeletal graph which
encodes both the geometric and topological information in
the surface to match and compare 3D models. Hilaga et al.
(2001) propose a method based on Multi-resolutional Reeb
Graphs (MRGs) to estimate a measure of similarity and cor-
respondence between 3D shapes. The similarity is calcu-
lated with a coarse-to-fine strategy using the attributes of
nodes in the MRG and topological consistency.
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View-based methods represent objects by their image-
plane projection. Chen et al. (2003) introduce the Light-
Field Descriptor in which the appearance of an object is
characterised by the projected appearance in a set of camera
views. Similarity is computed by rotating the camera system
surrounding each model until the highest overall similarity
(cross-correlation) between the two models from all viewing
angles is reached. The similarity between two 3D models is
defined as the summation of the similarities across all the
corresponding 2D images.

Bending-invariant techniques have been proposed to re-
trieve similar objects independent of changes in articulated
pose. Elad and Kimmel (2003) present a method to construct
a bending invariant signature for these models. They utilise
the geodesic distance between surface points as an invari-
ant to surface bending. A bending invariant surface is gener-
ated by transforming the geodesic distances between points
into Euclidean ones (via an MDS procedure). They trans-
late the problem of matching non-rigid objects in various
postures into a simpler problem of matching rigid objects.
Jain and Zhang (2007) present an approach to robust shape
retrieval from databases containing articulated 3D models.
Each shape is represented by the eigenvectors of a shape
affinity matrix defining the geodesic surface distance be-
tween model points. This gives a spectral embedding which
achieves normalisation against rigid-body transformations,
uniform scaling, and shape articulation.

2.2 Temporal Shape Matching

The acquisition of temporal 3D surface sequences from mul-
tiple view video has received considerable interest over the
past decade following the work of Kanade et al. (1997).
Research has primarily focused on methods for multiple
view reconstruction, structured representation and realistic
rendering (Aguiar et al. 2008; Vlasic et al. 2008; Starck
and Hilton 2003, 2007; Zitnick et al. 2004; Carranza et al.
2003). Advances in this field have led to the availability
of 3D video data sets of actors performing multiple mo-
tions which support high-quality rendering with interactive
viewpoint control. Reuse of captured 3D video sequences
for concatenative synthesis of novel animations (Starck and
Hilton 2007; Xu et al. 2006; Starck et al. 2005) requires tem-
poral shape matching to identify transition points. Temporal
shape matching for 3D video sequences has received limited
investigation. Related work can be found in the literature
on human motion recognition and concatenative animation
from video or marker-based human motion capture.

Schödl et al. (2000) introduced video textures which
identify transition points in a video sequence based on ap-
pearance similarity to produce an extended video sequence.
Transition points are found by temporal matching of sub-
sequences of the video to preserve the dynamics of the mo-
tion. In practice, such a sub-sequence match is achieved by

time filtering of the frame-by-frame similarity matrix with a
diagonal kernel. Similarity metrics based on 2D image dif-
ferences cannot be directly extended to 3D time-varying sur-
faces.

A number of researchers have addressed the problem
of temporal similarity for skeletal motion for concatena-
tive synthesis. In the case of skeletal motion the temporal
correspondence is known and similarity is evaluated from
difference in joint angle or position together with their ve-
locity and acceleration. Lee et al. (2002) modelled human
skeletal motion data as a first-order Markov process and
the probability of transitioning from one frame to another
is estimated from a measure of similarity. The cost func-
tion is the sum of weighted differences of joint angles and
joint velocities. The velocity term helps to preserve the dy-
namics of motion. Gleicher et al. (2003) developed meth-
ods to synthesize human motions from articulated motion
sequences by piecing together existing motion clips. Tran-
sitions are located by matching the point clouds over two
windows of frames. Each point cloud is formed by attach-
ing markers to the skeletons representing the pose at each
frame. Arikan et al. (2003) described a framework to syn-
thesize motions from articulated data by assembling frames
from a motion database. The distance between frames is
measured as the squared distance between feature vectors
extracted from the skeleton. Temporal similarity is achieved
by including velocities and accelerations for every joint in
the feature vectors. Similarity metrics on the skeletal mo-
tion cannot be directly applied to the surface sequences in
3D video.

In human motion recognition, volumetric analysis of
video, where a sequence of images is treated as a 3D space-
time volume, is widely used. Video features are then ex-
tracted: Bobick and Davis (2001) combine Motion-Energy
Images (MEI) and Motion-History Images (MHI) as tem-
poral motion templates for human movement recognition.
Efros et al. (2003) propose a pixel-wise optical-flow mo-
tion descriptor which is measured in a figure-centric spatio-
temporal volume for each person, to obtain a motion-to-
motion similarity matrix and time-filter the frame-to-frame
similarities. Gorelick et al. (2007) regard human actions as
3D shapes induced by the silhouettes in a space-time vol-
ume, extracting features such as local space-time salience,
action dynamics, shape structure and orientation. Weinland
et al. (2006) proposed a free-viewpoint representation for
human action based on a multi-camera system using Mo-
tion History Volumes (MHV) where alignment and compar-
ison are performed under a Fourier transform in cylindri-
cal coordinates around the vertical axis. For further read-
ing on motion recognition refer to Krüger et al. (2007) and
on whole body human motion synthesis refer to Lee et al.
(2002).
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3 Shape Descriptors for 3D Video Sequences

In this section, we review static shape descriptors evaluated
for similarity measurement in 3D video sequences of people
and novel spatio-temporal shape descriptors. Static descrip-
tors are presented first from the literature. The extension to
temporal shape matching is then presented using a simple
temporal filter and by extending the static descriptors to 4D
shape-flow descriptors in the temporal domain.

3.1 Static Shape Descriptor

Evaluation of shape similarity is restricted here to local fea-
ture distributions. Global features provide only a coarse de-
scriptor that is insufficient to distinguish similarity in a time
varying sequence where an object can have the same global
properties for a relatively large proportion of the time. In
this section we briefly describe four widely used feature dis-
tribution descriptors previously introduced for general static
shape matching which are evaluated for 3D video sequences.

3.1.1 Shape Distribution (Osada et al. 2002)

Shape Distribution (SD) provides a shape signature as a
probability distribution of a shape function that measures
some geometric properties of a 3D model. Typical shape
functions are the angle, distance and area for randomised
points on the model surface. Here we adopt the D2 measure,
the distance between two random points on the surface, as
proposed by Osada et al. (2002). Similarity is measured as
the L2 distance between the distribution D2 defined for two
meshes. Figure 2 illustrates the Shape Distribution represen-
tation computed for a single frame of a 3D video sequence
of a person. Given a 3D mesh representation the descriptor
is constructed as follows:

Algorithm 1 (Shape Distribution)

1. Distance is iteratively measured between two random
points on the surface.

Fig. 2 Illustration of the Shape Distribution

2. A 1D histogram is created to count the number of point-
pairs at different distances.

3. The final histogram is normalised.

3.1.2 Spin Image (Johnson and Hebert 1999)

A Spin Image (SI) is a 2D histogram which encodes the den-
sity of mesh vertices projected onto an object-centred space.
Given a 3D surface mesh consisting of a set of oriented
points corresponding to the mesh vertices, the histogram is
constructed as follows:

Algorithm 2 (Spin Image)

1. An object-centred coordinate (α,β) is computed for each
vertex according to the distance α along and the distance
β from the principal axis of the object.

2. A 2D accumulator indexed by (α,β) is created and the
accumulator is incremented for each vertex within the
support of the spin image.

3. The final histogram is normalised.

The centre of mass and the first axis of the Principal Com-
ponent Analysis (PCA) of the distribution of mesh vertices
is used to define the object-centred coordinate system. Fig-
ure 3 illustrates the Spin Image for a single frame of a 3D
video sequence, showing the histogram distribution result-
ing from a plane rotated about a vertical axis through the
centroid of the shape.

3.1.3 Shape Histogram (Ankerst et al. 1999)

A Shape Histogram (SH) partitions the space containing an
object into disjoint cells corresponding to the bins of a his-

Fig. 3 Illustration of the Spin Image
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togram. Given a 3D surface mesh, a volume sampling spher-
ical histogram is constructed as follows:

Algorithm 3 (Shape Histogram)

1. A volumetric representation is constructed by rasterising
the surface into a set of voxels that lie inside the model.

2. Space is transformed to a spherical coordinate system
(r,φ, θ) around the centre of mass for the model.

3. A 3D spherical histogram is constructed, accumulating
the voxels in the volume representation.

4. The final histogram is normalised.

The spherical coordinate histogram is compared invari-
ant of rotation by testing similarity for all feasible rotations.
Human models are assumed to have an upright direction and
instead of rotating 3D mesh, we generate a fine histogram
first, then shift the histogram with 1◦ resolution, and re-bin
to a coarse histogram. A similarity measure is computed as
the minimal of L2 distance between the coarse histograms.

Fig. 4 Illustration of the Shape Histogram

The shape histogram representation with radial and spheri-
cal bins is illustrated in Fig. 4.

3.1.4 Spherical Harmonics (Kazhdan et al. 2003)

The Spherical Harmonic Representation (SHR) describes an
object by a set of spherical basis functions. A descriptor is
constructed by measuring the energy contained in different
frequency bands, where the frequency components are rota-
tion invariant. The descriptor is constructed as follows:

Algorithm 4 (Spherical Harmonics)

1. The volume of an object is divided into a set of concentric
shells.

2. The frequency decomposition in each shell is computed.
3. The norm for each frequency component at each radius is

concatenated into a 2D histogram indexed by radius and
frequency.

The resolution of the shape descriptor is defined by the
number of shells defining the radii (r) and the preserved
bandwidth (bw) in the spherical harmonics. A similarity
measure is computed as the L2 distance between the his-
tograms. Figure 5 illustrates the SHR functions and coef-
ficient distribution for the single 3D video frame of a per-
son.

3.1.5 Static Shape Similarity for 3D Video

The shape descriptors presented in the previous section can
be used to define a similarity measure. Given two individ-
ual frames x, y of 3D video sequences and their descriptors
x′, y′, frame-to-frame similarity is defined as follows,

s(x, y) = d(x′, y′) (1)

where function d(x′, y′) computes the L2 distance between
descriptors x′, y′ for Shape Distribution, Spin Image and
Spherical Harmonics,

dSD,SI,SHR(x′, y′) = ‖x′ − y′‖ (2)

Fig. 5 Illustration of the
Spherical Harmonic
Representation
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for Shape Histogram, let x′(θ) denote the histogram shifted
with θ◦. Function d(x′(θ), y′) computes the minimal dis-
tance by shifting the histogram with 1◦ resolution, i.e. θ =
0,1, . . . ,359,

dSH(x′, y′) = min
θ

‖x′(θ) − y′‖ (3)

Given two sequences of 3D video X = {xi} and Y = {yj },
the frame-to-frame similarity matrix S is defined as follows,

S(i, j) = s(xi, yj ) (4)

As illustrated in previous work (Cutler and Davis 2000) self-
similarity is demonstrated for periodic motion. Figure 6(a)
shows the self-similarity and classification evaluated using
the known ground truth surface correspondence for shape
and motion (Sect. 4). The periodic structure of the walking
motion is illustrated by the diagonal lines of high similar-
ity (dark blue). The self-similarity matrix for the four static
shape descriptors computed independently frame-to-frame
without known correspondence is shown in Fig. 6(b–e). The
static shape similarity for all descriptors gives high similar-
ity (dark blue) diagonal lines corresponding to the ground-
truth periodic motion structure. Additional lines of high-

similarity occur due to ambiguities in the static shape de-
scriptor. Anti-diagonal lines of high-similarity occur with
all static shape descriptors due to frames with similar shape
but opposing motion such as the mid-point of the walk cy-
cle (marked as a triangle) illustrated in Fig. 6(g). For the
Shape Distribution and Spherical Harmonic similarity mea-
sures there is also a periodic line structure of high-similarity
at twice the motion frequency in the diagonal direction due
to mirror ambiguity where a shape and its mirror image have
the same descriptor. An example of this (marked as a circle)
is illustrated in Fig. 6(f) where frames 47–51 are dissimilar
to frames 66–70 but similar to their mirror image.

3.2 Temporal Shape Descriptors

Extension of static shape descriptors to include temporal
motion information is required to remove the ambiguities
inherent in static shape descriptors for comparing 3D video
sequences of similar shape. In this section we first extend
static shape descriptors to the time domain by temporal fil-
tering (Huang et al. 2007b) and introduce two novel shape-
flow descriptors with global and local alignment of frames.

Fig. 6 Static similarity measure for motion “Fast Walk” in a straight
line compared with itself. Self-similarity and classification obtained by
(a) Temporal Ground-Truth (TGT). Self-similarity and classification
at FPR = 5% (Sect. 4.2) obtained by (b) the rotated volume-sampling
Shape Histogram (SHvr); (c) Shape Distribution (SD); (d) Spin Image

(SI); (e) Spherical Harmonics Representation (SHR). Example frames
show (f) sub-sequences around frames 49 and 68 (centre) with “mirror
ambiguity”; (g) sub-sequences around frames 24 and 40 (centre) with
similar shape but different direction of motion for arms and legs
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3.2.1 Time-Filtered Descriptors

Time information can be incorporated in a static 3D shape
descriptor using a temporal filter (Huang et al. 2007b). Pre-
viously a similar strategy has been used to achieve motion-
to-motion matching in video (Schödl et al. 2000; Efros et al.
2003). In practice, the time filter is applied to the frame-to-
frame similarity matrix obtained from the static Shape De-
scriptors. Temporal shape similarity is obtained by convolv-
ing the static shape similarity with a time filter,

ST (i, j) = S ⊗ T (Nt ) = 1

2Nt + 1

Nt∑

k=−Nt

S(i + k, j + k) (5)

where S is the frame-to-frame similarity matrix and
T (Nt ) is a time filter with window size 2Nt + 1, T (Nt ) =
1/(2Nt + 1) ∗ I . The computational complexity of the time
filtered static shape descriptor is the cost of computing the
frame-to-frame static shape similarity together with a con-
volution of the resulting similarity matrix with the temporal
filter. The cost is dominated by the cost of computing the
static shape similarity with a relatively small additional cost
of time filtering.

Time-filtering emphasises the diagonal structure of the
similarity matrix and reduces minima in the anti-diagonal
direction resulting from motion and mirror ambiguities
in the static shape descriptor (Huang et al. 2007b). Fig-
ure 7(c–f) illustrates the effect of time-filtering with increas-
ing temporal window size for each of the shape descriptors
on a periodic walking motion. Comparison with the tempo-
ral ground-truth Fig. 6(a) shows that the incorrect shape sim-
ilarity in the anti-diagonal direction which occur with static

shape similarity is reduced. Performance evaluation of the
time-filtered shape descriptors is presented in Sect. 4.5.1.

3.2.2 Shape-Flow Descriptors

Two new temporal shape descriptors are introduced to mea-
sure the change in shape for a surface in a sub-sequence
corresponding to a given time window. Time filtering of
the static shape similarity matrix breaks the temporal con-
sistency in a motion as each static comparison is aligned
independently on a frame-by-frame basis as illustrated in
Fig. 8(b). The new descriptors consider not only the simi-
larity between individual frames in a sub-sequence but also
preserve the temporal changes using a sub-sequence align-
ment, referred to as a shape-flow descriptor.

Fig. 8 Shape-flow matching. Sequences (a) before applying any align-
ment; (b) after applying independent alignment for each frame used
in static shape similarity; (c) after single-frame shape-flow matching;
(d) after multi-frame shape-flow matching

Fig. 7 Temporal similarity measure for motion “Fast Walk” in a
straight line compared with itself. Self-similarity with window size 3,
5, 7, 9 and classification with window size 9 at FPR = 5% (Sect. 4.2)
obtained by (a) multi-frame alignment volume-sampling spheri-
cal Shape Histogram (SHvrG); (b) single-frame alignment volume-

sampling spherical Shape Histogram (SHvrS); (c) Temporal filtered
volume-sampling spherical Shape Histogram (SHvrT); (d) temporal
filtered Shape Distribution (SDT); (e) Temporal filtered Spin Im-
age (SIT); (f) Temporal filtered Spherical Harmonics Representation
(SHRT)
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Performance evaluation of static shape descriptors
(Huang et al. 2007a) extended in Sect. 4.4 demonstrates
that the volume sampling 3D spherical histogram gives the
best performance in classifying shape similarity. The 3D his-
togram is extended here to incorporate changes in shape us-
ing a 4D histogram in which each 3D spherical bin records
the shape over a 1D time window. Similarity is again de-
fined using the L2 distance between coarse histograms after
alignment.

Histogram alignment is considered using two methods,
either by finding the optimal alignment of the 3D descrip-
tor for the centre frame of the temporal window, or by find-
ing the optimal alignment of the entire sequence in the 4D
temporal descriptor. We call the first method single-frame
shape-flow matching and the second multi-frame shape-flow
matching. Figure 8(c, d) illustrates the alignment in the time-
filtered, single-frame and multi-frame shape-flow similarity.
Single-frame shape-flow matching has the same computa-
tional complexity as static shape matching but may not find
the optimal alignment for the whole sub-sequence. Multi-
frame shape-flow matching is more robust but the compu-
tational cost is proportional to the time window size. Com-
parative performance evaluation of the temporal shape-flow
descriptors is presented in Sect. 4.5.2.

Optimal alignment is derived first by finding the trans-
lation that matches the centre of mass and then by shifting
the histogram1 to give the greatest similarity. Let x′

i and y′
j

be 3D shape histograms of individual frames in two motions
X = {xi} and Y = {yj }, d(x′

i (θ), y′
j ) computes the L2 dis-

1Shifting a SHvr descriptor in its θ bins is equivalent to rotating a mesh
around the vertical axis but is more efficient (Sect. 3.1.3).

tance between x′
i (θ) with a shift θ about the vertical axis

and y′
j with no shift. The similarity matrix for single-frame

shape-flow matching SSHvrS(i, j) is defined as follows,

SSHvrS(i, j)

=
∑k=Nt

k=−Nt
‖x′

i+k(argminθ‖x′
i (θ) − y′

j‖) − y′
j+k‖

2Nt + 1
(6)

For multi-frame shape-flow matching, the optimal rota-
tion is found by searching for the rotation that minimises
the distance between two sub-sequences and the similarity
matrix SSHvrG(i, j) is computed as follows:

SSHvrG(i, j) = min
θ

∑k=Nt

k=−Nt
‖x′

i+k(θ) − y′
j+k‖

2Nt + 1
(7)

The effect of the shape-flow descriptors for a walking
motion is illustrated in Figs. 7 and 9. For motion in a straight
line Fig. 7(a–c) similar results are obtained for shape-flow
with single and multiple frame alignment and the temporal
filtering with independent alignment of frames. Comparison
of the shape-flow descriptors (SHvrG, SHvrS) and the time-
filtered descriptor (SHvrT) based on shape histograms with
other time filtered descriptors (SDT, SIT, SHRT) Fig. 7(d–f)
shows reduced temporal ambiguity with similarity and clas-
sification close to ground-truth 6(a). Distinction between
the performance of shape-flow and time-filtered descriptors
can be seen when the motion is not in a straight line. Fig-
ure 9 illustrates the cross-similarity between walking in a
straight line and on a spiral for the ground-truth and tempo-
ral shape descriptors. Figure 9(d, e) show that time-filtered
descriptors SHvrT and SHRT fail to correctly characterise

Fig. 9 Temporal similarity measure for motion “Fast Walk” in a
straight line compared with motion “Fast Walk” on a spiral. Cross-
similarity and classification obtained by (a) Temporal ground-truth
(TGT). Cross-similarity with window size 9 and classification at
FPR = 5% (Sect. 4.2) obtained by (a) Temporal ground-truth (TGT);

(b) Multi-frame alignment volume-sampling spherical Shape His-
togram (SHvrG); (c) Single-frame alignment volume-sampling spheri-
cal Shape Histogram (SHvrS); (d) Temporal filtered volume-sampling
spherical Shape Histogram (SHvrT); (e) Temporal filtered Spherical
Harmonics Representation (SHRT)
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Fig. 10 An example of the failure of SHvrS. Rachel’s “Jog”
compared to “Walk” with a fixed window size 9 (Nt = 4) us-
ing (a) multi-frame shape-flow SHvrG; (b) single-frame shape-flow
SHvrS; (c) time-filtering shape histogram SHvrT

the change in similarity due to the non-linear motion path re-
sulting in changes in direction between consecutive frames.
Figure 9(b, c) shows that the shape-flow descriptors SHvrG
with global and SHvrS with local alignment of frames pro-
duce similarity and classification which closely match the
ground-truth Fig. 9(a). This illustrates a limitation of tempo-
ral filtering in correctly estimating similarity for non-linear
motion paths and shows that shape-flow descriptors over-
come this limitation. Quantitative performance evaluation is
presented in Sect. 4.5. Figure 10 illustrates a limitation of
shape-flow with local single frame alignment SHvrS versus
global multiple frame alignment SHvrG for cross-similarity
between real 3D video sequences of walk and jog motions.
For shape-flow with multiple frame alignment SHvrG sim-
ilarity Fig. 10(a) the diagonal structure is clearly visible.
However, with single frame alignment Fig. 10(b) incorrect
low-similarity scores occur on the diagonal (marked with a
circle), this is due to failure of the single-frame alignment.
Errors occur in SHvrS due to incorrect estimation of the
alignment at the central frame. SHvrG is robust as optimal
alignment is estimated for a sequence of frames.

4 Performance Evaluation

The performance of the shape descriptors is evaluated using
a ground-truth dataset from simulated data. Temporal mesh
sequences are constructed for different motions and the clas-
sification of correct and incorrect similarity is assessed us-
ing the Receiver-Operator Characteristic (ROC) curves for
each technique. This evaluation extends previous compari-
son of shape descriptors for a single person performing eight
motions (Huang et al. 2007a, 2007b) to a comprehensive
dataset comprising models of 14 people each performing 28
motions. Optimal parameter settings for each shape descrip-
tor are determined by evaluating the ROC for different pa-
rameter settings (Huang et al. 2007a). Similarity measures
are then evaluated against temporal ground-truth to identify
similar frames in the 3D video sequences.

4.1 Ground Truth

A simulated data-set is created using articulated character
model for 14 people animation using motion capture se-
quences. Animated models of people with different body-
shape and clothing were reconstructed from multiple view
images (Starck and Hilton 2003). Each model has a sin-
gle surface mesh with 1k vertices and 2k triangles. Mod-
els were animated using 28 motion capture sequences from
the Santa Monica mocap archive for the following mo-
tions: sneak, walk (slow, fast, turn left/right, circle left/right,
cool, cowboy, elderly, tired, macho, march, mickey, sexy,
dainty), run (slow, fast, turn right/left, circle left/right),
sprint, vogue, faint, rock n’roll, shoot. Each sequence com-
prised 100 frames giving a total of 39200 frames of syn-
thetic 3D video with known ground-truth correspondence.
Figure 11 shows 14 models and example frames of multiple
motions for one model. Given the known correspondence
rigid-body registration can be performed to align the frames
for ground-truth assessment of similarity. The known cor-
respondence is only used to compute the true ground-truth
surface distance, and is not used in computing any of the
shape similarity measures. Temporal Ground-Truth (TGT)
which includes both the surface shape and motion is used to
evaluate the performance of shape descriptors.

The ground-truth shape similarity between two surfaces
is measured using the average distance between correspond-
ing vertices. This characterises the frame-to-frame differ-
ence between the surfaces. Let X and Y be the set of mesh
vertices for two surfaces, both have N vertices, if d(xi, yi)

denotes the Euclidean Distance between one vertex xi ∈ X

and its corresponding vertex yi ∈ Y , we calculate the aver-
age distance as follows:

CP (X,Y ) = 1

N

∑

i

d(xi, yi) (8)

Temporal Ground-Truth similarity CT (X,Y ) between two
frames is then defined by a combination of the shape simi-
larity, CP (X,Y ), and velocity similarity, CV (X,Y ), as:

CT (X,Y ) = (1 − α)CP (X,Y ) + αCV (X,Y ) (9)

CV (X,Y ) = 1

N

∑

i

dv(x
′
i , y

′
i ) (10)

where x′
i = xi(t + 1) − xi(t), y′

i = yi(t + 1) − yi(t) are ve-
locity vectors, t +1, t denote the next and current frame, and
dv(x

′
i , y

′
i ) = |x′

i − y′
i | is the magnitude of vector difference

between velocity vector x′
i and y′

i . Throughout the results
presented in this work α is set as 0.5 to balance the shape
and velocity similarity. For classification of frames as simi-
lar a threshold is set on the Temporal Ground-Truth similar-
ity where the average distance CT (X,Y ) falls below a fixed
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Fig. 11 Synthetic dataset. (a) 3D Human Models (left to right): Adrian, Alan, Dave, EngJon, Graham, Jez, Jigna, Joel, Marc, PengWei, Pete, Pip,
Venura, Yacob. (b–i) Example frames from motion sequences of Jigna

Fig. 12 Temporal ground truth self-similarity and classification of 28
motions from “Jigna” (from top left to bottom right in order): sneak,
slow walk, fast walk, slow run, fast run, sprint, walk circle (left and
right), run circle (left and right), walk turn (left and right), run turn

(left and right), walk in styles (cool, cowboy, dainty, elderly, macho,
march, mickey, sexy, tired, toddler) and complex motions (rock and
roll, vogue dance, faint, shot arm)

predefined threshold τT . After normalisation of the self-
similarity to the range [0,1] the similarity threshold is set
to τT = 0.3 throughout this work which gives the ground-
truth binary classification matrix RT GT (i, j) of frames i and
j as similar or dissimilar. A ground-truth binary classifica-
tion matrix RT GT (i, j) ∈ {1,0} is then defined to classify
frames as similar (RT GT (i, j) = 1) if CT < τT and dissimi-
lar (RT GT (i, j) = 0) otherwise. Inclusion of the surface mo-
tion in the ground-truth similarity together with the shape
removes the ambiguity inherent in static single frame simi-
larity measures. The lines of similarity in the diagonal direc-

tion indicate the periodic structure of the synthetic 3D video
sequences. Figure 12 shows the similarity and ground-truth
classification for the 28 motions with one of the models.

4.2 Evaluation Criterion

Performance of the shape descriptors is evaluated using the
ROC curve, showing the true-positive rate (TPR) or sensitiv-
ity in correctly defining similarity against the false-positive
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rate (FPR) or one-specificity where similarity is incorrect.

TPR = ts

ts + f d
; FPR = f s

f s + td
(11)

where ts denotes the number of true-similar predictions,
f s the false similar, td true dissimilar and f d false dis-
similar in comparing the predicted similarity between two
frames to the ground-truth similarity.

The similarity score for each shape descriptor is nor-
malised to the range S′ ∈ [0,1]. A binary classification ma-
trix for the shape descriptor Rτ

S(i, j) ∈ {1,0} is then defined
for a threshold τ to classify frames as similar (Rτ

S(i, j) = 1)
if S′ < τ and dissimilar (Rτ

S(i, j) = 0) otherwise. The clas-
sification Rτ

S(i, j) for a given τ is then compared to the
ground-truth similarity classification RT GT (i, j) defined in
Sect. 4.1. The number of true and false similarity classifica-
tions is then counted:

ts =
∑

ij

{RT GT (i, j) × Rτ
S(i, j)} (12)

td =
∑

ij

{(1 − RT GT (i, j)) × (1 − Rτ
S(i, j))} (13)

f s =
∑

ij

{(1 − RT GT (i, j)) × Rτ
S(i, j)} (14)

f d =
∑

ij

{RT GT (i, j) × (1 − Rτ
S(i, j))} (15)

The ROC performance for a given shape similarity mea-
sure is obtained by varying the threshold τ ∈ [0,1] to obtain
the true TPR(τ ) and false FPR(τ ) positive rates according
to (11).

4.3 Parameter Setting for Static Shape Descriptors

Optimal parameter setting for each of the shape descriptors
to match frames in 3D video sequences of people are de-
termined by evaluating the ROC curve for a range of pa-
rameter settings (Huang et al. 2007a). This evaluation uses
the known ground-truth similarity to evaluate the classifica-
tion performance. Table 1 presents the optimal parameters
for each shape descriptor. These parameter settings are used
throughout the evaluation presented in this paper. Further
details of the optimal parameter evaluation can be found in
(Huang et al. 2007a).

4.4 Evaluation of Static Shape Descriptors

The performance of static shape descriptors for evaluation of
static shape similarity was previously presented in (Huang
et al. 2007a). In this paper we present an evaluation of static
shape descriptors against the temporal ground-truth defined

Table 1 Optimal parameter settings for shape descriptors on 3D video
sequences of people (Huang et al. 2007a)

Descriptor Parameters

Shape distribution No. of samples N = 106

Spin Image No. of bins Nb = Nbα = Nbβ = 40

Shape Histogram No. of radial bins Ns = 10

No. of angular bins Nbθ = 2Nbφ = 40

Spherical Harmonics No. of radial shells Ns = 32

No. of harmonics Nb = 16

in Sect. 4.1 for an extended range of motions with differ-
ent people. Figure 13(a) shows the combined ROC perfor-
mance of static shape descriptors for the simulated dataset.
Figure 17 presents the ROC curves for the 28 motions with
14 people for each of the shape descriptors. The ROC curves
show that the volume-sampling shape-histogram descriptor
(SHvr) achieves the highest performance among Shape Dis-
tribution (SD), Spin Image (SI), Spherical Harmonics Rep-
resentation (SHR). SHvr consistently achieves the highest
performance against ground-truth for all motions. The dis-
tribution of the curves for the 14 animated models of differ-
ent people shows that the volume-sampling shape-histogram
(SHvr) performs consistently with variation in size and
clothing and outperforms other shape descriptors.

4.5 Evaluation of Temporal Shape Descriptors

In this section, we evaluate temporal shape descriptors de-
fined in Sect. 3.2 against the Temporal Ground Truth. Op-
timal parameter settings for the shape descriptors given in
Table 1 are used for evaluation of the temporal descrip-
tors. Since the optimal temporal window size will depend
on the rate of motion with a larger window size being re-
quired for slow motions, performance of each of the tempo-
ral shape descriptors is evaluated for each motion using the
ROC curve with a range of temporal window size.

4.5.1 Evaluation of Time Filtered Descriptors

Combined ROC curves of the time-filtered descriptors on
self-similarity against temporal ground truth across all peo-
ple and motions in the simulated dataset with an increasing
temporal window size are shown in Fig. 13(b–j). The per-
formance of all descriptors increases compared to the equiv-
alent static shape similarity in Fig. 13(a). The time-filtered
volume-sampled shape histogram SHvrT gives the highest
performance of all time-filtered shape descriptors against
temporal ground-truth. This is expected as the volume-
sampled shape histogram SHvr gives the best performance
for the static shape descriptors and time-filtering reduces
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Fig. 13 Evaluation of ROC curves for static and temporal descriptors on self-similarity across 14 people each performing 28 motions

Fig. 14 Evaluation of ROC curves for temporal descriptors on cross-similarity “Fast Walk” in a straight line and on a spiral across 14 people

Table 2 Relative computational cost of temporal shape descriptors
against window size for Roxanne’s Game Character, motion “Hit”.
Relative cputime per frame

Nt 0 1 2 3 4 5 6

SHvrT 1.00 1.00 1.00 1.02 1.05 1.09 1.11

SHvrS 1.00 1.02 1.04 1.05 1.06 1.06 1.07

SHvrG 1.00 3.11 5.16 7.05 9.06 11.07 13.10

the temporal ambiguity increasing the classification accu-
racy. Comparison of the different shape descriptors with re-
spect to window size also shows that the time-filtered shape
histogram SHvrT is relatively insensitive to the change of
window size. Figure 18 gives a more detailed comparison
by presenting individual ROC curves for the 28 motions
with 14 people for each of the time-filtered shape descrip-
tors with a fixed temporal window size. This demonstrates
the time-filtered volume-sampled shape histogram SHvrT

Table 3 Real 3D Video datasets for 9 actors and motions (transition
motions are sequences which transition from one motion to another,
i.e. walk to jog) Ns is the number of sequences and Nf the number of
frames

Performer Motions Ns Nf

JP street dance: lock, pop, 8 2300

flash-kick, free-dance,

head-spin, kickup + transitions

Roxanne

– Game Character walk, jog, stand, stagger, 10 442

hit, tense + transitions

– Fashion 1 walk, pose, twirl + transitions 6 491

– Fashion 2 walk, pose, twirl + transitions 6 435

Others

– Adrian Gordon idle, walk, jog, kick, 24 875

Gregor Rachel punch + transitions

Jon Rafael Tony

Total 54 4543
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Fig. 15 Intra-person similarity measure for Real Data. Similarity
matrix, curve, example frames for (a) Roxanne Game Character’s
“Walk”; (b) Roxanne Fashion1’s “Walk”; (c) Roxanne Fashion2’s

“Walk”; (d) Gregor’s “Walk”; (e) Rachel’s “Walk”; (f) Rachel’s “Jog”;
(g) JP’s “Pop”; (h) JP’s “Lock”

has low inter-person variance and consistently outperforms
other time-filtered shape descriptors.

4.5.2 Evaluation for Shape-Flow Descriptors

Combined ROC curves of the shape-flow descriptors for clas-
sification of self-similarity against temporal ground truth
across all people and motions in the simulated data set are
presented in Fig. 13(b–j) with increasing temporal window
size. Characteristics for the shape-flow descriptors SHvrG
and SHvrS are superimposed with the time-filtered de-
scriptor SHvrT showing that the performance is similar for

straight line motions. Analysis of the detailed characteris-
tics shows that in general the multi-frame shape-flow SHvrG
achieves the highest performance with time-filtering SHvrT
and single-frame shape flow SHvrS marginally lower. The
difference between aggregate characteristics is lower than
the variance for different people and motions as shown in
Fig. 19. Figure 14 shows a case when shape-flow descrip-
tor SHvrG and SHvrS achieve significantly higher perfor-
mance than time filtering SHvrT for motion on a non-linear
path. Shape-flow has significantly better performance than
time-filtering for all window sizes. ROC curves for single
and multiple frame frame shape-flow in Fig. 14 are super-
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Fig. 16 Inter-person similarity measure for Real Data. Similarity matrix, curve, example frames for “Walk” across 7 people including Adrian,
Gordon, Gregor, Rachel, Jon, Rafael and Tony

imposed indicating that performance of single and multiple
frame alignment is comparable. Table 2 presents the relative
computational cost for time-filtering and shape-flow mea-
sures with increasing window size. This shows that there is
an order of magnitude increase in computational cost for
the shape-flow descriptor with multiple frame alignment
SHvrG, whereas single frame shape flow and time-filtering
have a computational cost similar to the static shape de-
scriptor (Nt = 0). In conclusion, the multi-frame shape-flow
descriptor (SHvrG) overcomes the limitation of temporally
filtered static shape descriptors (SHvrT, SIT, SDT, SHRT)
for 3D video sequences with non-linear motion paths and is
robust to errors in single frame alignment which occur with
(SHvrS).

5 Similarity Measure on Real Data

In this section we apply the time-filtering shape histograms
SHvrT to captured 3D video sequences of people. Real 3D
video sequences were reconstructed from multiple camera
video capture available as a public research database (Starck
and Hilton 2007). The real 3D video sequences of nine peo-
ple performing a variety of motion used in this evaluation are
summarised in Table 3. These include a street dancer (JP)
performing complex movements with baggy clothing, a per-
former (Roxanne) wearing 3 different costumes with shorts,
a short-dress and a long-dress together with seven other
actors performing a standard set of movements. Captured
3D video sequences are unstructured meshes with unknown
temporal correspondence and time varying mesh connectiv-
ity, topology and geometry.

Time-filtering shape histograms SHvrT are used to evalu-
ate intra-person similarity between the 3D video sequences

of different motions for each performer/costume combina-
tion and the inter-person similarity for different performers

performing the same motion. Evaluation has been performed
for all available sequences. Example results are presented
demonstrating typical results with identification of frames

with similar shape and motion. SHvrT is applied to all se-
quences with the optimal resolution parameters (Table 1)

and a temporal window size of 9 (Nt = 4).
Intra-person similarity across different motions for sev-

eral performers together with an example similarity curve
are presented in Fig. 15. The example matched frames for
each performer show that the temporal similarity metric

identifies frames of similar pose and motion across the dif-
ferent motions performed by each actor. In Figs. 15(b, c) for

Roxanne the similarity clearly identifies the periodic struc-
ture of the walking motion and identifies frames with simi-

lar shape and motion even with the highly non-rigid move-
ment of the loose dress and long-hair. Figures 15(g, h) for
the street dancer JP performing complex movements shows

there is a lot of visible structure in the similarity matrix,
frames with similar pose and motion are also correctly iden-

tified. This evaluation on real 3D video sequences demon-
strates that the temporal similarity identifies similar frames
and is robust to complex movement and loose clothing.

Inter-person similarity across several people each per-
forming a walking motion together with an example sim-

ilarity curve are shown in Fig. 16. The similarity measure
correctly identifies frames with a similar shape and motion

for each person. This illustrates that the temporal similarity
measure can also be used to identify similar frames across
different people.
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6 Conclusion

A comprehensive performance evaluation of shape similar-
ity metrics for 3D video sequences of people has been pre-
sented. Existing static shape similarity metrics which give
good performance for rigid shape retrieval have been eval-
uated: shape-distribution (Osada et al. 2002); spin-image
(Johnson and Hebert 1999); shape-histogram (Ankerst et al.
1999); and spherical harmonics (Kazhdan et al. 2003). Tem-
poral shape similarity metrics are presented to overcome
the ambiguity in independent frame-to-frame comparison.
Three approaches are evaluated based on extension of shape-
histograms over time: time-filtering of the static shape simi-
larity metric; and shape flow with single and multiple frame
alignment.

Performance is evaluated using the Receiver Opera-
tor Characteristics for synthetic 3D video sequences with
known ground-truth for animated models of 14 people each
performing 28 motions giving a total of 39,200 frames.
Evaluation of static shape similarity metrics demonstrates
that shape-histograms with volume-sampling consistently
gives the best performance for different actors and motions.
However, all static shape similarity metrics are shown to
exhibit temporal ambiguities in 3D video for frames with
similar shape but different motion directions. Evaluation
of temporal shape similarity metrics for a variety of syn-
thetic motions demonstrates that multi-frame shape flow
consistently gives the best performance for different people,
motions and temporal window size. However, multi-frame
shape flow has an order of magnitude increase in computa-
tional cost over time-filtering and single-frame shape flow.
Time-filtered shape histograms are computationally effi-
cient and give marginally lower performance for straight
line motions but have significantly reduced performance
for non-linear movements. Shape-flow with single-frame
alignment achieves comparable performance to multi-frame
shape flow, overcoming the limitations of time-filtered static
similarity measures for 3D video sequences with non-linear
paths, with a computational cost comparable to static shape
similarity. However, single frame shape-flow may fail due to
errors in alignment at the central frame whereas multi-frame
shape-flow is robust.

Evaluation on real 3D video sequences for 9 people
demonstrates that time-filtering shape histograms correctly
identify frames with similar shape and motion for loose
clothing (skirts), complex motions (street-dance) and be-
tween different people. Self-similarity also identifies the pe-
riodic structure in the motion such as walking and running
even for sequences with loose clothing. Performance eval-
uation on a comprehensive set of real and ground-truth 3D
video sequences of people shows that time-filtered shape-
histograms are consistent for different people and move-
ments giving a good trade-off between correct similarity and
computational cost.
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