
Introduction to OpenGL
“Shading”

Shading in OpenGL
OpenGL supports two shading modes

 (1) Flat Shading (default)
 glShadeModel(GL_FLAT);

 - For flat shading OpenGL uses the normal associated with
 the first vertex of each polygon
 - For triangle strips OpenGL uses the normal of the 3rd vertex
 for the 1st polygon, 4th vertex for 2nd poly,…..

 (2) Gouraud or Interpolative Shading
 glShadeModel(GL_SMOOTH);

 For Gouraud shading we must specify the normal for each vertex
 which should be computed as the average of the adjacent face normals

 In OpenGL we can associate a normal with a particular vertex by:
 glNormal3f(nx,ny,nz);
 glNormal3fv(pointer_to_normal);

 normals are defined before specifying the subsequent vertex
 - normals are model variables (like colour) the specified normal
 is applied to all subsequent verticies until a new normal is defined

Turning the Lights On!

OpenGL support 4 light sources:
 Ambient
 Point
 Spot light
 Distant

Can have upto at least 8 sources + global ambient light in a program

 - specify and enable each source

Enable lighting:

 glEnable(GL_LIGHTING);

Enable individual lights:

 glEnable(source); source = GL_LIGHT0, GL_LIGHT1…

Individual light parameters set by:
 glLightfv(source, parameter, pointer_to_array);
 glLightf(source,parameter,value);

Parameters (vector in homogenous coordinates):

 GL_POSITION - position or direction
 GL_AMBIENT - rgba ambient light
 GL_DIFFUSE - rgba diffuse light
 GL_SPECULAR - rgba specular light

Light position/direction determined by 4th homogenous coordinate point/vector:

 GL_float light0_pos[] = {1.0,2.0,3.0,1.0}; - point
 GL_float light0_dir[] = {1.0,2.0,3.0,0.0}; - direction

Lights are treated as points/vectors in OpenGL position light relative
to camera using the model-view transform

Lighting Parameters

Light Attenuation with Distance

Distance attenuation in OpenGL is based on the model:

Parameters for light attenuation with:

 GL_CONSTANT_ATTENUATION - a
 GL_LINEAR_ATTENUATION -b
 GL_QUADRATIC_ATTENUATION -c

Set parameters with:

 Glfloat a=1.0;
 glLightf(GL_LIGHT0, GL_CONSTANT_ATTENUATION, a);

2

1)(
cdbda

df
++

=

Example - Lighting

Setup a point light source at position (1,5,7) with red diffuse component
no ambient component and white specular component

glEnable(GL_LIGHTING);

glEnable(GL_LIGHT0);

Glfloat pos0[] = {1.0,5.0,7.0,1.0};
Glfloat diffuse0[] = {1.0,0.0,0.0,1.0};
Glfloat ambient0[] = {0.0,0.0,0.0,1.0};
Glfloat specular0[] = {1.0,1.0,1.0,1.0};

glLightfv(GL_LIGHT0, GL_POSITION, pos0);
glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuse0);
glLightfv(GL_LIGHT0, GL_AMBIENT, ambient0);
glLightfv(GL_LIGHT0, GL_SPECULAR, specular0);

Spot Lights

Convert a positional light source to a directional spot light with by
setting parameters:

 GL_SPOT_DIRECTION - direction vector (x,y,z)
 GL_SPOT_CUTOFF - angle to direction at which light stops [0,180]
 GL_SPOT_EXPONENT - attenuation of spot light with direction

Setup spot light as:

 GLfloat spot_dir[] = {1.0,0.0,0.0}
 GLfloat spot_cutoff = 45.0;
 GLfloat spot_exponent = 2.0;

 glLightfv(GL_LIGHT0,GL_SPOT_DIRECTION,spot_dir);
 glLightf(GL_LIGHT0,GL_SPOT_CUTOFF,spot_cutoff);

 glLightf(GL_LIGHT0,GL_SPOT_EXPONENT,spot_exponent);

Global Ambient Light

We can add a global ambient illumination independent of individual sources

 Glfloat global_ambient[] = {0.0,0.5,0.0,1.0}; - green ambient light

 glLightModelfv(GL_LIGHT_MODEL_AMBIENT,global_ambient);

Default Lighting Model

The default lighting model used by OpenGL assumes:
 - viewer is distant from objects allowing a constant direction
 - only the front faces of object are visible (ie not inside)

These assumptions allow for more efficient rendering

The default light model settings:

 glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, GL_TRUE);

 - compute direction to viewer for each vertex
 - required if viewer close to scene
 - default OK for many scenes

 glLightModeli(GL_LIGHT_MODEL_TWO_SIDED,GL_TRUE);

 - render both front and back sides of polygons
 - use to view the inside of polygonal surface objects

Materials in OpenGL

Specification of material properties in OpenGL is based on the 3 different
lighting components (ambient/diffuse/specular) and the Phong reflection model

Material reflection parameters are specified by:

 glMaterialfv(face, type, pointer_to_array);
 glMaterialf(face,type,value);

‘face’ parameter

 GL_FRONT_AND_BACK - parameters are applied for front &back
 GL_FRONT - applied to front only
 GL_BACK - applied to back only

‘type’ parameter are based on the reflection coefficients (ka, kd , ks) for
the Phong model:

 GL_AMBIENT - ambient reflection coefficient
 GL_DIFFUSE
 GL_SPECULAR
 GL_DIFFUSE_AND_SPECULAR - equal for diffuse and specular

these parameters are all specified as homogenous vectors

Example - Specification of Material Properties

Specify a material with a small ambient component, red diffuse component and
white specular component

GLfloat ambient[] = {0.1,0.1,0.1,1.0};
GLfloat diffuse[] = {1.0,0.0,0.0,1.0};
GLfloat specular[] = {1.0,1.0,1.0,1.0};

glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, ambient);
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, diffuse);
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, specular);

Material properties are modal:
 - after setting the material properties they are applied to all subsequent
 objects specified until the next change in material properties.

Additional Material Properties

Shininess
 - the shininess of a surface is defined by the exponent
 of the specular reflection term in the Phong model
 - the shininess can be specified by

 glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS,100.0);

Emisive Surfaces
 - self-luminous (light emitting) objects can be specified
 - use for putting visible light sources into the image
 - the emissive term is unaffected by other light sources
 & does not affect any other surfaces
 - adds a fixed colour to the surface

 GLfloat emission[]={0.0,0.0,0.5,1.0} - blue light

 glMaterialfv(GL_FRONT_AND_BACK,GL_EMISSION,emission);

Example - Flat Shading a Polygon Mesh

Flat Shading
 - For each polygon we can compute a normal n for each face as the
 cross-product of the 1st 3 non-coliear verticies
 - The mesh is then specified by specifying each polygon as:

 glBegin(GL_POLYGON);
 glNormal3fv(n);
 glVertex3fv(v0);
 glVertex3fv(v1);
 glVertex3fv(v2);
 glEnd();

Gouraud Shading
 - we require a function that computer the normal n for each vertex from the
 adjacent face normals:

 compute_normal(i,n); i is the vertex number

 - given this function we can specify the mesh be computing a new normal
 for each mesh vertex

 glShadeModel(GL_SMOOTH);
 glBegin(GL_POLYGON);
 compute_normal(0,n);
 glNormal3fv(n);
 glVertex3fv(v0);
 compute_normal(1,n);
 glNormal3fv(n);
 glVertex3fv(v1);
 compute_normal(2,n);
 glNormal3fv(n);
 glVertex3fv(v2);
 glEnd();

Example - Gouraud Shading a Polygon Mesh

Summary

Shading:
 glShadeModel(m); m = GL_FLAT or GL_SMOOTH

 Lighting:

 glEnable(GL_LIGHTING); - switch on lighting
 glEnable(s); individual lights source = GL_LIGHT0, GL_LIGHT1…

 glLightfv(source, parameter, pointer_to_array); - parameters
 glLightf(source,parameter,value);
 parameter = GL_POSITION/GL_AMBIENT/GL_SPECULAR/GL_DIFFUSE
 glLightModelfv(model,global_ambient);
 model = GL_LIGHT_MODEL_AMBIENT
 GL_LIGHT_MODEL_LOCAL_VIEWER/GL_LIGHT_MODEL_TWO_SIDED

Material Properties:
 glMaterialfv(face, type, pointer_to_array);
 glMaterialf(face,type,value);
 face = GL_FRONT_AND_BACK/GL_FRONT/GL_BACK
 type = GL_AMBIENT/GL_DIFFUSE/GL_SPECULAR/
 GL_DIFFUSE_AND_SPECULAR
 GL_SHININESS/GL_EMISSION

