
Introduction to OpenGL
“Viewing”

Reading: Angel Ch.4

OpenGL API for Viewing

2 Important State Matricies:

 GL_MODELVIEW - Transform from world to camera frame

 GL_PROJECTION - Projection to image plane coordinates

 - defines view frustum

Set the current state using:

 glMatrixMode(*) - all subsequent commands relate to the
 “*” matrix mode

3D World GL_MODELVIEW GL_PROJECTION image

Camera Frame
The initial ‘default’ camera frame is centred at the origin with
the view direction aligned with the negative Z axis of the world frame

Transformation (translation/rotation) are applied to move the camera frame
relative to the world frame “classical viewing”

Distances are measured relative from the viewer to the object
(rather than in physically based systems where the object is moved relative to
the
camera & distance is relative to the object)

Classical viewing results in a left-handed camera frame
 - the mirror of the world frame [X,Y,Z] camera frame [X,Y,-Z]
 - in OpenGL clipping distances & view frustum are
 measured from the camera ie glOrtho() V Y

Initial camera
frame

X
Z

X

Y

Z

Xc

Zc

Yc

Camera frame LH

world
frame RH

Camera Positioning

Use GL_MODELVIEW to transform camera to an arbitrary
position & orientation (relative to world frame)

2 functions provided:

 glTranslatef(-x,-y,-z) - translates camera position to (x,y,z)
 in world frame
 glRotatef(-a, nx, ny, nz) - rotation about axis (nx, ny, nz) by
 angle a

X
Z

Y
(x,y,z)

X
Z

Y

-90 about (0,1,0)
or 90 about (0,-1,0)

Translation Rotation

Example: Camera Positioning

To position the camera at (0,-10,0) with view-direction (-1,0,0)
specified in the world frame

(1) Rotate about y-axis 90 degrees to obtain the correct
 view-direction
(2) Translate by -10 along the camera z-axis to obtain the correct
 position

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0.0,0.0,-10);
glRotatef(-90.0,0.0,1.0,0.0);

Remember: The operation specified last is performed first

wwc TRxVxx ==

GLUT Look at Function

GLUT provides a utility function for easy camera positioning

Specify: camera position e + point to lookat a + camera up direction u

 gluLookAt(ex,ey,ez,ax,ay,az,ux,uy,uz);

X
Z

Y
a

e

u

The equivalent view plane normal n=a-e
from this we derive the 4x4 camera view matrix V

Projections in OpenGL

To specify the projection we define the view frustum
2 methods

 - direct setting of projection matrix
 - specify the view frustum for orthographic or perspective
 using gl functions

Orthographic projection:

 glOrtho(xmin,xmax,ymin,ymax,znear,zfar);

Perspective projection:

 glFrustum(xmin,xmax,ymin,ymax,znear,zfar);

 gluPerspective(fovy,aspect,near,far);

Orthographic view frustum

glOrtho(xmin,xmax,ymin,ymax,znear,zfar);

(xmin,ymin,-znear)

(xmax,ymax,-zfar)

Z

X

Y

zfar,znear can be negative but zfar>znear

Perspective view frustum

glFrustum(xmin,xmax,ymin,ymax,znear,zfar);

zfar >0 and znear >0
zfar,znear are distance to plane
 from the centre of projection
projection plane is orthogonal to z-axis

gluPerspective(fovy,aspect,near,far);

GLUT utility function
specify view frustum by field-of-view angle
 = angle between top and bottom planes
view frustum is symmetric about y=0 & x=0 planes
near/far as in glFrustum()
For a plane at distance d:

(xmin,ymin,-znear)

(xmax,ymax,-zfar)

Z

X

Y

Z
X

Y

w
h

fovy

h
waspect

d
hfovy

=

⎟
⎠
⎞⎜

⎝
⎛= −

2
tan2 1

Example: Setting up a Perspective Projection

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustum(-1,-1,1,1,1,2);

Set up a perspective projection to view objects within a 90degree field of view
at a distance of 1 to 2 units

2 implementations:

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(90,1.0,1,2);

Hidden-surface removal
When we display a scene we want to render the nearest visible
surface for objects inside the view frustum.

 - ‘Hidden-surface-removal’ algorithms

z-buffer algorithm:

 - as each polygon in the scene is rasterised (projected to image plane
 and sampled) we keep track of the distance from the centre-of-projection
 to the closest point on any projected polygon
 - if a polygon is closer then keep the distance and atributes for that

 polygon.

Image-space hidden surface removal algorithm supported by OpenGL
Worst-case complexity is proportional to number of polygons

 ie real-time if polygons can be rendered in real-time

Image plane

centre-of-projection

Enabling Hidden-surface-removal

To enable z-buffering OpenGL
 (1) Initialise display mode with a depth buffer
 (2) Enable depth buffering
 (3) Clear depth buffer each time scene is rendered

init() {
 ...
 glutInitDisplayMode(...|...|GLUT_DEPTH);
 glEnable(GL_DEPTH_TEST);
 ...
}

display(){
 ...
 glClear(GL_DEPTH_BUFFER_BIT);
 ...
}

Example: Walking through a scene see sec 5.6

Example: Shadows sec5.9

