
Introduction to OpenGL
“Getting Started”

Reading: Angel Ch.2 or Woo Ch.1

What is OpenGL?

Application programmers interface (API) for 2D/3D graphics

User
Input/Output
- keyboard
- mouse
- screen

Operating
System

(Unix/Win.)

Graphics
Library

 (OpenGL)

Application
Program

(C/C++/Java)

Hardware
- CPU (Intel/SGI)
- GPU Graphics Accelerator (Nvidia/ATI)

Programmer
YOU

Why OpenGL?

Open standard for graphics based applications
•  originally developed by SGI as ‘GL’ graphics library
•  Released as an open-standard
•  Widely used for interactive graphics applications

Animation/VR/Games

Platform independent library of low-level graphics functions
•  Approx. 250 distinct commands for 3D graphics
•  Hardware accelerated for particular platform
•  Very fast 3D rendering

What OpenGL doesn’t do:
 No functions dependent on a particular platform
 No high-level functions for object description etc.
 Utility libraries to support platform dependent functions
 GLU/GLUT

What OpenGL does & does’nt do

Does:
 - Model shape using 3D points/lines/polygons
 - Lighting
 - Shading
 - Texturing of images
 - Rendering: clipping/projection/visibility

Doesn’t:

 - Limited support for: mirrors, shadows, inter-reflection,
 curved surfaces, motion blur
 - Scene hierarchies (OpenSG/VRML/Java-3D)
 - User interface functions (X/Windows…)
 - Input (mouse/keyboard)

OpenGL API

Application Interface for 2D/3D Graphics
•  Based on synthetic camera model
•  Graphics pipeline:

3D model - transform - clip - project - rasterise - 2d image
•  Library of C-functions to specify:

Objects
Viewer
Lights
Material Properties

•  State machine:
behaviour determined by a set of global state variables

A Simple Example OpenGL Program: Square
#include “gl/gl.h” /* include functions from gl library */
main() {

 /* call my function to initialise a draw window here */

 /* OpenGL code to draw a square */
 glClearColor(1.0,0.0,0.0,0.0); /* set window to red (r,g,b,a) */
 glClear(GL_COLOR_BUFFER_BIT); /* clear window */

 glOrtho(0.0,1.0, 0.0,1.0,-1.0,1.0); /* setup 3d coordinate space */

 glColor3f(0.0,0.0,1.0); /* set drawing colour blue (r,g,b) */
 glBegin(GL_POLYGON); /* specify a polygon */
 glVertex3f(0.25,0.25,0.0) /* vertex 1 (x,y,z) */
 glVertex3f(0.75,0.25,0.0) /* vertex 2 (x,y,z) */
 glVertex3f(0.75,0.75,0.0) /* vertex 3 (x,y,z) */
 glVertex3f(0.25,0.75,0.0) /* vertex 4 (x,y,z) */
 glEnd();

 glFlush(); /* draw all objects */

 /* call myfunction to update window and handle events */

}

Result of Simple Example Code

OpenGL Syntax

All OpenGL commands have the prefix ‘gl’
 glClear()
 glColor3f()
 glVertex3f()

Constants are defined with prefix ‘GL’ & use ‘_’ to separate words

 GL_COLOR_BUFFER_BIT

American spelling: Color

OpenGL Variable Types

Type information is appended to the end of the command
 glColor3f(r,g,b) - a colour of 3 floating point components
 glVertex3f(x,y,z) - a vertex with 3 floating point coordinates
 glVertex2f(x,y) - a vertex with 2 floating point coordinates

Different versions of the same function exist for different types

 glVertex2i(p,q) - vertex with 2 integer coordinates

Suffix Type OpenGL Type C type
 b 8-bit integer GLbyte short
 i 32-bit integer GLint int or long
 f 32-bit real GLfloat float
 d 64-bit real GLdouble double
 ui 32-bit unsigned int GLuint unsigned int
+ others

 Use OpenGL Types to avoid problems

OpenGL Arrays or Vectors

Many commands support arrays:
 GLfloat color_array[] = {1.0,0.0,0.0}; /* rgb array */
 glColor3fv(color_array);

 GLint coordinate_array[] = {1,7};
 glVertex2iv(coordinate_array);

To refer to a command which takes multiple types we use ‘*’:

 glColor*()
 glVertex*()

One additional type: GLvoid - used for functions that use arrays

OpenGL as a State Machine

OpenGL is a state machine with state variables which control all
aspects of modelling/viewing/lighting:

 - draw colour
 - background colour
 - line width
 - shading
 - antialiasing on/off
 - texture on/off
 - coordinate system
 …..

All state variables have default values and can be changed:
 glColor3f(1.0,0.0,0.0); /* set draw colour state to red */
 glLineWidth(2.0); /* set line width state */
 glEnable(GL_LINE_STIPPLE); /* set draw dashed lines */

Current ‘state’ is applied for all subsequent drawing commands

OpenGL Modelling

Primitives: points, lines, polygons (triangle, quadrilateral, n-gon)
 + sets of primitives

Small set of primitives to allow maximum portability

Complex shapes specified by many primitives

OpenGL primitives specified by a list of points:

 glBegin(type); /* type is point/line/polygon */
 glVertex*();
 glVertex*();
 glVertex*();
 …..
 glEnd();

Objects: Utility library GLU contains pre-defined derived objects:

 sphere, cylinder ….

Points & Lines
type in glBegin():

GL_POINTS

GL_LINES

GL_LINE_STRIP

GL_LINE_LOOP

Convention: Points are numbered from zero p0… pn-1

p0

p1
p2 p3

p4

glColor3f(0.0,0.0,1.0);
glBegin(type);
 glVertex2i(x1,y1);
 glVertex2i(x2,y2);
 glVertex2i(x3,y3);
 glVertex2i(x4,y4);
 glVertex2i(x5,y5);
glEnd();

p0

p1
p2 p3

p4

p0

p1
p2 p3

p4

p0

p1
p2 p3

p4

Polygons
Must be: ‘Flat’ All vertices lie in a plane

 ‘Simple’ Polygon edges do not intersect
 ‘Convex’ All point are on one side of any edge

Allows for fast polygon rendering algorithm implement in hardware

Type for glBegin():
 GL_POLYGON GL_TRIANGLES GL_QUADS

p0

p1
p2 p3

p4
p0

p1
p2 p3

p4

p0

p1
p2 p3

p4

Convention: Polygons are specified in anticlockwise vertex order

Sets of Polygons

Groups of Triangles or Quadrilaterals that share verticies

Efficient representation & rendering

Type for glBegin();
 GL_TRIANGLE_STRIP GL_TRIANGLE_FAN

p1

p0

p2 p4

p3

p0

p1

p2 p3

p4

All triangle from p0 Triangles (p0,p1,p2)
 (p1,p3,p2)

 (p2,p3,p4)

Color in OpenGL

It’s just not “colour”!

RGB Three-component additive colour model: red + green + blue

Analogous to human colour perception: 3 colour receptors
Assumption: Any 2 colours are the same if they have the same rgb

 (does not allow for distribution of wavelengths)

OpenGL colour components are in the range [0.0,1.0]

 - each component represents the intensity of that colour
 glColor3f(0.1,0.4,0.7); /* r,g,b colour intensities */

Alpha channel - represents the opacity or transparency

 - RGBA colour model
 glColor4f(1.0,0.0,0.0,0.5); /* red semi-transparent */

Slide showing RGBA transparency

Viewing in OpenGL

Specification of the camera:
 - position/orientation
 - projection
 - field-of-view

OpenGL supports two projection models: orthographic & perspective

Orthographic projection: All rays parallel

 - Default camera is at the origin alligned with the -Z axis
 - Projection is specified by a parallelapiped as:

 glOrtho(left,right,bottom,top,near,far);
(right,top,far)

(left,bottom,near)

X

Y

Z camera at origin alligned with -Z axis

Utility Libraries

A number of related libraries are available which provide utility
functions:

Graphics Utility Library (GLU): All OpenGL implementations

 Common objects (sphere,cylinder..)
 Uses only GL library common

 All commands begin ‘glu’
 #include “GL/glu.h”

GL Utility Toolkit (GLUT): Separate from OpenGL

 Common interface with windows systems
 Versions for (Xwindows, Microsoft Windows….)
 Minimum functionally for a windows system
 All commands begin ‘glut’
 #include “GL/glut.h”

Library Organisation

 Application
Program

GLU

GL

GLUT Windows
X,Win

Graphics
Hardware

Input devices
 - mouse
 - keyboard

GLUT - setup windows for graphics display
 - input events from mouse/keyboard

Getting Started with GLUT

GLUT provides useful utility functions for implementing a graphics
application:

glutCreateWindow() - creates a window of a pre-specified size.

glutDisplayFunc(display) - calls a user specified function “display”

 whenever window needs to be drawn

glutMainLoop() - enter an event processing loop so that graphics

 application continues to run & respond to user input
 until exited

glutCreateWindow glutDisplayFunc(display) display

glutMainLoop

GLUT main function
#include “GL/glut.h” /* include GLUT,GLU,GL */

int main(int argc, char **argv){

 glutInit(&argc,argv); /* initialise glut */

 /* initialise OpenGL display state */
 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);

 /* initialise window */
 glutInitWindowSize(500,500);
 glutInitWindowPosition(0,0);
 glutCreateWindow(“simple OpenGL example”);

 /* register display function */
 glutDisplayFunc(display);

 init(); /* call my own initialisation routine */

 /* start displaying & event handling*/
 glutMainLoop();
 return 0;

}

Example: Completing the Square
We can now write the display functions for drawing a square
void init() {

 glClearColor(1.0,0.0,0.0,0.0); /* background color */
 glOrtho(0.0,1.0,0.0,1.0,-1.0,1.0); /* viewing */

}

void display() {

 glClear(GL_COLOR_BUFFER_BIT); /* clear window */
 glColor3f(0.0,0.0,1.0);
 glBegin(GL_POLYGON);
 glVertex3f(0.25,0.25,0.0);
 glVertex3f(0.75,0.25,0.0);
 glVertex3f(0.75,0.75,0.0);
 glVertex3f(0.25,0.75,0.0);
 glEnd();
 glFlush(); /* draw everything */

}

Example 2: The Sierpinski Gasket
Sierpinski gasket is a fractal shape defined by
a simple recursive algorithm:
(1) pick 3 triangle verticies v1, v2, v3
(2) select a point inside the triangle p
(3) randomly pick a triangle vertex v i
(4) draw the point p’ halfway between p and v i
(5) repeat 3 & 4 with p = p’

v1

v2 v3

p0
p1

p2 p3

void display(void) {
 typedef GLfloat point2[2]; /* define2d point type */
 point2 verticies[3]={{0.0,0.0},{250.0,500.0}, {500.0,0.0}}; /* a triangle */
 point2 p = {75.0,50.0}; /* arbitrary start point */
 int j,k;

 glClear(GL_COLOR_BUFFER_BIT); /* clear window */
 /* Sierpinski algorithm: Recursive plotting of 5000 points */
 for (k=0; k<5000; k++) {
 j=rand()%3; /* pick vertex at random */
 p[0] = (p[0]+verticies[j][0])/2.0; /* new half-way point */
 p[1] = (p[1]+verticies[j][1])/2.0;
 glBegin(GL_POINTS); /* add point to display list */
 glVertex2fv(p);
 glEnd();
 }
 glFlush(); /* display now */

}

Implementation of Sierpinski Gasket

