
Curves and Surface II 
 

Angel Ch.10 



Curves and Surfaces I 

Surface representation 
 - explicit  
 - implicit 
 - parametric 

   parametric forms are widely used in computer graphics  
 
Parametric forms 

 - cubic polynomial  
 - local defininition 
 - Interpolating 
  

 This lecture: other parametric forms of surfaces 
  - Hermite  
  - Bezier 

             - B-Spline, NURBS 



Hermite Curves and Surfaces 

Rather than interpolating points we interpolate between 
endpoints + tangents at end points  

 - ensures continuity between curve/surface segments 
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curve continous C a giving
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This overcomes the problem with interpolating cubics  
where the end-points were only continuous in position 



Parametric Cubic Polynomial Curves 

Cubic polynomial curves are widely used:  
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Cubic Polynomial Interpolation 
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Hermite Curves and Surfaces 

Rather than interpolating points we interpolate between 
endpoints + tangents at end points  

 - ensures continuity between curve/surface segments 
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curve continous C a giving
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This overcomes the problem with interpolating cubics  
where the end-points were only continuous in position 
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Bezier Curves and Surfaces 

Interpolating - interpolate 4 points along the curve 
Hermite - interpolate 2 points (start/end) + derivatives 2 derivatives 
 
Can use the 4 control points of the interpolating curve to define the  
derivatives in the Hermite curve:  ‘Bezier Curves’ 
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Bezier Surface Patches 
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The 2nd order partial derivative with respect to u and v constrains the twist 
 - tendency to deviate from being flat 
 - points lie in the same plane if twist is zero 
  0)(              11100100 =−+− pppp

Bezier surface patches provide a means of smooth and intuitive control 
of surface shape from control points 

 - surface is constrained to lie in convex hull of control points 
              - C0 continuity between adjacent patches defined by adjacent control 
                 points 
 
How can we define curves/surfaces with higher order continuity between patches 



Cubic B-Spline 

Ensure joins between patches are continuous 
Options: 

 (1) use higher order polynomials 
 (2) shorten the interval & use more polynomial segments 
 (3)  use the same control points but don’t require the curve 
        to interpolate (pass through) any of the control points 

 

B-splines use option (3) the curve is controlled by sets of 4 control  
points 

 - use overlapping sets of control points to achieve  
   continuity between patches 



Cubic B-Spline Curves 
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Due to the  C2 continuity B- spline curves are widely used 
     -  physical processes such as bending of metal are continous
       in the 2nd derivative
     -  C2 continuous curve will appear to be smooth even at the join points
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B-Splines and Bases 

ui
iui
iui
iui
iui

iu

ub
ub
ub
ub

uB

(u)pB

i

ii

≤+
+≤≤+

+≤≤
≤≤−
−≤≤−

−<

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

−

+
+

=

2
21

1
1

12
2

0
)1(

)(
)1(
)2(

0

)(                      

 as written becan point  control single a ofon contributi  totalThe

 intervalsadjacent four in  curve  the toscontributep points controlEach 

3

2

1

0

 i

functions basis ofn combinatiolinear  a is interval  wholeover the curve -        
segments curve spline-B all for the basis  theformsfunction  same -        

function same  theof version shifted a is i)-B(ufunction Each 

)()(          

:as defined is curve spline entire The
 points control ofset  aGiven 

1

1

0

∑
−

=

−=
m

i
ii

n

piuBup

.....pp



B-Spline Surfaces 
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Generalised B-Splines 
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NURBS: Non-uniform Rational B-Spline 
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Summary 
Derived a set of curve/surface representation who’s shape 
is controlled by a set of control points: 
     Cubic curves 

 - Interpolating: pass through control points (rough) 
 - Hermite: interpolate end-points+end-point derivatives 

                  (smooth) 
 - Bezier: special case of Hermite defined from control points 

     All have problems of continuity between adjacent segments  

Cubic B-spline curves:   
 - continuity between adjacent segments 
 - 4-control points define central part of curve 
 - gives C2 continuity 
 - represent as a set of basis functions acting on control points  

NURBS: Non-uniform rational B-splines 
              - preserve shape under perspective transforms  

 - widely used in CAD/graphics 


