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Curves and Surfaces I

Surface representation
- explicit
- implicit
- parametric
parametric forms are widely used in computer graphics

Parametric forms
- cubic polynomial
- local defininition
- Interpolating

This lecture: other parametric forms of surfaces
- Hermite
- Bezier
- B-Spline, NURBS



Hermite Curves and Surfaces

Rather than interpolating points we interpolate between
endpoints + tangents at end points

- ensures continuity between curve/surface segments

Hermite Form of a Curve define constraints as : yA

Curve intersects end - points P(0)

p0)=p, =c, p()=p,=c,+¢, +c, +c, p(o)%—p(\l)\\:g(l)
Constrain the tangent at the end - points /

p.(0)=¢ p.(D=c¢, +2c, +3c, i

In matrix form :

p(@® ] [1 0 0 0]
p(1) 1 1 1 1
q: = C
p,(O)[ [0 1 0 0
p.D] [0 1 2 3]



Solve equations to find:

1 0 O
: : : 0O 0 1

c=M,q Gives'Hermite geometry' matrix M, = 3 3 5
2 -2 1

Resulting polynomialis given by :

pu)y=u'M,q

This can be represented as a set of blending functions on the points :
pu)=b)" q

2u® —3u® +1

—2u’ +3u’

w —2u’ +u

b(u)=Mu=

3 2
u —u

The four blending functions have none of their zero's in[0,1]

- smoother than interpolating blending function

_— e OO




Hermite polynomials can be used to represent a curve with continuous derivates

- such that the end point of one curve has the same derivative as the start point
of the adjacent curve

p(1)=4(0)

r.(D=¢,(0)

where p(u) and q(u) are adjacent section of the curve with u =[0,1] for both

giving a C' continous curve
pO(1) = q9(0)

p(1) = q(0)
q(1)

p(0)

This overcomes the problem with interpolating cubics
where the end-points were only continuous in position



Parametric Cubic Polynomial Curves

Cubic polynomial curves are widely used:

3
2 3 k T
plu)y=c,tcu+tcu +cu = E cu =uc
k=0

Co 1 _
Cix
c, U
c = U= c, =|c
2 k
c, U 4
3 | Ckz |
c, U

12 equations in 12 unknowns ¢

Want methods of deriving parameters ¢ for a desired curve!



Cubic Polynomial Interpolation

Given a set of 4 -points (1€ 12dof) derive curve that interpolates

between them and exactly passes through them :

’a P

p,=|y;| i=0..3 2
Z. Po

1

Ps
What are the coefficients ¢ such that the curve p(u)=u'c

interpolates the points p,

Let the points be at equally spaced intervals along the curveu =0, %,1

1
This gives the four conditions : ?
py = p(0)=c¢,

pi=p@=c+ic+{) e+ e

p,=p3E)=c+3¢+ (%)202 T (%)303

p;=p()=c,+c, +c, +c,



Hermite Curves and Surfaces

Rather than interpolating points we interpolate between
endpoints + tangents at end points

- ensures continuity between curve/surface segments

Hermite Form of a Curve define constraints as : yA

Curve intersects end - points P(0)

p0)=p, =c, p()=p,=c,+¢, +c, +c, p(o)%—p(\l)\\:g(l)
Constrain the tangent at the end - points /

p.(0)=¢ p.(D=c¢, +2c, +3c, i

In matrix form :

p(@® ] [1 0 0 0]
p(1) 1 1 1 1
q: = C
p,(O)[ [0 1 0 0
p.D] [0 1 2 3]



Solve equations to find:

1 0 O
: : : 0O 0 1

c=M,q Gives'Hermite geometry' matrix M, = 3 3 5
2 -2 1

Resulting polynomialis given by :

pu)y=u'M,q

This can be represented as a set of blending functions on the points :
pu)=b)" q

2u® —3u® +1

—2u’ +3u’

w —2u’ +u

b(u)=Mu=

3 2
u —u

The four blending functions have none of there zero's in[0,1]

- smoother than interpolating blending function

_— e OO




Hermite polynomials can be used to represent a curve with continous derivates
- such that the end point of one curve has the same derivative as the start point
of the adjacent curve
p(1)=4(0)
r.(1)=4,(0)
where p(u) and g(u) are adjacent section of the curve with u =[0,1] for both
giving a C' continous curve
pO(1) = q9(0)
p(1) = q(0)
q(1)

p(0)

This overcomes the problem with interpolating cubics
where the end-points were only continuous in position



Hermite surface patch :
3 3
p(u,v) =Y bwh,(u)g,
i=0 j=0
1s defined to interpolate the 4 corner points and their derivatives
At corner (0,0) we define :

p0,0)=c¢cy p,(0,0)=c¢c, p,(0,0)=¢,, p,0,0)=¢,
Solving gives a surface patch which is continous in position and 1st

derivative between adjacent patches.
Therefore, Hermite surface patch has advantages over the direct interpolation.

Derivatives can be defined from the input control points

1€ p, = Poo — Por



Hermite surface patch :
3 3
pu,v) =3 bwh,(u)q,
i=0 j=0

is defined to interpolate the 4 corner points and their derivatives
At corner (0,0) we define :

p0,0)=¢,, p,0,0)=c¢c,, p,0,0)=¢c, p,(0,0)=c],
Solving gives a surface patch which is continous in position and 1st

derivative between adjacent patches.

Therefore, Hermite surface patch has advantages over the direct interpolation.

p(u,v)= iiuivjcij =u'Cy

i=0 j=0
Coo Co1 Coo Co3 1 1
Co €1 € €3 u v
Cro Cy1 Gy Cpy u %
3 3
Cyp G311 C3p Gy | u |V



Bezier Curves and Surfaces

Interpolating - interpolate 4 points along the curve
Hermite - interpolate 2 points (start/end) + derivatives 2 derivatives

Can use the 4 control points of the interpolating curve to define the
derivatives in the Hermite curve: ‘Bezier Curves’

Given 4 control points:  p,, p,, P,» Ps
p(0)=p,
p()=p;,
Bezier defined the derivatives by linear combinations of the
control points as :
p,(0)="11 _lp‘) =3(p,—po)
3

p, )= =3(p, — p))

3




This gives 12 constraints on our cubic polynomialas :

Po =6y
p3 :CO +C1 +C2 +C3
3(p,—py) =¢

3(ps —p,) =¢ +2¢, +3c¢,
As for interpolating and Hermite cases we have 12 equations in

12 unknowns which can be soved to find the cubic parameters:

c=Myp
1 0 0 O]
-3 3 0 0
M, =
3 6 3 0
-1 3 -3 1




The resulting cubic Bezier polynomialis :

pu)y=u"Myp

Givena set of control points p,....p, we interpolate the Bezier curve

in sections (as for the interpolating curve):{p,....p; },{Ps----Ps }---{D, 5D, }

This curveis C° as different control points are used on either side of section



Bezier blending functions :

pu)=bw)" p

- (1-u)’
3u(l-u)’
3u”(1—u)

3
u

b(u)=M ,u=

Blending functions are a case of the 'Bemnstein Polynomials':

d! )
b (u)= u (1—u)"™* :
@)= (=w
Properties : :
(1) All zeros of the polynomial are at O or 1 y:

0<b,(u) for 0<u<l

therefore, blending functions are smooth in this interval



(2) Sum of blending function for any u equals 1

ibid(u) =1

therefore, cubic Bezier polynomialis a convex sum

p(u) =Zbi<u>p,-

All points p(u) must be inside the convex hull of the control points p,
- Bezier curveis near the control points
- stable for interactive design (small change in control points gives

a smallchange in curve)




Bezier Surface Patches

Bezier surface patch defined by 16 control points (as for interpolation)
- Patch is constrained to pass through four corners
p(0,0) — pOO p(l,O) = p30 p(O,l) = p03 p(lal) = p33

- Partial derivatives at corners are determined from control points

dp(0,0 dp(0,0
p(0.0) =3(P1o— Poo) p(0.0) =3(Po1 = Poo)
ou ov
9°p(0,0
p(0.0) =9(Poo — Po1 + Pro— P11)
Judv
p30
P33
Poo Pos

Bezier patch 1s given by blending functions as :

3 3
pu,v)=Y > bwb,v)p, =u" M PM v

i=0 j=0



The 2nd order partial derivative with respect to u and v constrains the twist
- tendency to deviate from being flat
- points lie in the same plane if twist 1s zero

(Poo = Por + Pro—P1)=0

Bezier surface patches provide a means of smooth and intuitive control
of surface shape from control points
- surface 1s constrained to lie in convex hull of control points
- CY continuity between adjacent patches defined by adjacent control
points

How can we define curves/surfaces with higher order continuity between patches



Cubic B-Spline

Ensure joins between patches are continuous
Options:
(1) use higher order polynomials
(2) shorten the interval & use more polynomial segments
(3) use the same control points but don’ t require the curve
to interpolate (pass through) any of the control points

P, ®
op,

p(r\

p(1)

op,

Po®

B-splines use option (3) the curve 1s controlled by sets of 4 control
points
- use overlapping sets of control points to achieve
continuity between patches



Cubic B-Spline Curves

For a set of control points: {p, ,, p, > P> Pisi}
we define the curve p(u) between ponts p, , p, for0<u <1

Di-p ° Pi

~ o~
Do p(u) oDy

Similarly,
for{p, ;, p, ,,p._i» p;} We define the curve g(u) between points p, ,, p, , forO<u <1
for{p, |, P;> Pi.1» Pi.,t WE define the curve r(u) between pomts p,, p,,, for0<u <1

This provides sufficient degrees of freedom for C* contininuity between segments

Note : none of the control points are interpolated

Di-p ° Pi

) *Pm

qu)”" p(u) ——3p
pi—? pl+1

Pis®



Consider the two segment

q(u) controlled by {p, ;. p, ,, ... p,} pe P ° Pi
p(w controlled by {p, 5, p, 1, P;s Pin} P p
We have: Di_»

Q(u):uTMq with q:[pi—3 P> Py pi]
pwy=u"Mp with p=[p,, p, P Pl

Could impose constraints

p(0)=q1) p,0)=q,1)
& derive the corresponing shape matrix

- many possible conditions for relating constraint values to control points

Consider most common B - spline curve definition :
Let:

p(0)=g)=¢(p,+4p_,+tp) p,0)=q,0)=5(p,—p.,)



We have the relation to the coefficient array u :

pw)=u'c

appling the constraints at u = 0 gives

Co = %(pi—Z + 4pi—1 + pi)

Applyingsymmetric constraints at p(1) :

¢ = %(pi _pi—Z)

p(1)=r(0)=cy+c¢,+c,+c;=¢(p,,+4p,+ D))
pu(l) :ru(o) :Cl +2€2 +3C3 :%(piﬂ _pi—l)

This gives the B - spline shape matrix Dy ®
X _

M=

where

pu)y=u"Mgp

-3
3

4
0

-6
3

1

3

3
-3

0
0
0

1_

Di-p

q(u)
Pi_p

“pw)



The B - spline blending functions
pu)=b(u)" p

b(u)zMguzé

Asin the case of Bezier curves we have
0<b(u)<1l for 0<uc<l

-curve varies slowly over the interval

(1-u)’
4—6u’+3u’
14+ 3u+3u” =3u’

3
u

ibi(u) =1

The blending functions are a convex sum of the points

- curveis alwaysinside the convex hull of the points



The B - spline curve was constrained to be C' continuous

- resulting curveis C* continuous

Due to the C” continuity B - spline curves are widely used
- physical processes such as bending of metal are continous

in the 2nd derivative

- C” continuous curve will appear to be smooth even at the join points

Downside :
For each set of 4 control points we only define the section of the
curve between the central control points (1/3 of the Bezier curve)
- require 3 times as many control points as Bezier
- requires 3 times as much computation to compute the complete

curve for a given set of points



B-Splines and Bases

Each control points p, contributes to the curvein four adjacent intervals

The total contribution of a single control point can be written as B,(u)p,

r

0 u<i-2
b(u+2) i—-2<u<i-I ! b+ 1) by
b(u+l) i—-1<u<i VARN
Bi(u):< . .
b,(u) i<u<i+l .
b3(u—1) +1<u<i+?2 -2 i-1 0 i+ i+2
0 I+2<u

N

Given a set of control pomts p,.....p,
p_1 Pip

The entire spline curveis defined as : P; 2 42 Py ol
p(u)=21‘Bl.(u—l)pl. =2 i1 i i+l i+2
1=

Each function B(u-1)1s a shifted version of the same function
- same function forms the basis for the all B - spline curve segments

-curve over the whole interval 1s a linear combination of basis functions



B-Spline Surfaces

Defined as for B - spline curves:
3 3
p(u,v)=2 > bwh,(v)p,
i=0 j=0
p;; are the 16 control points which define the surface

for the central region p,, — p,, P
30

pOO p03

B - spline surface patch is inside the convex hull of the control points
- C” continuity
- smooth control of surface
- appears much smoother than Bezier patch

- Requires 9 times more computation than Bezier



Generalised B-Splines

The generalised approximation problem can be stated as

Given a set of control points p,....p,,
find a function p(u) =[x(u), y(u),z(u)] overu . <u<u__

that 1s smooth and close to the control points (in some sense)

Suppose we have a set of 'knots' {u, }

U . SUy SupeSu Su

m

U, ...... u_|1s the knot arra
0™"1 n y

A general spline 1s defined as the d order polynomial between the knots
d
p(u)chjkuj u, <usu,,,
=0

n(d +1) parametersc

Continuity between segments 1s enforced by applying conditions at

the knots based on the control points



Example: Cubic splinesd =3
n +1 control points = n -1 internal knots + 2 ends

4n parameter coefficients

To ensure C* continuity at knots we have 3n - 3 conditions
+ Interpolation of n+1 control = 4n - 2 conditions

Additional two conditions obtained by constraints on 2 ends ie slope

However, general splineis global solve 4n equations in 4n unknowns
- no local solution

- difficult to use for computer graphics



For a generalised B - splines the curveis defined as a set of

blending or basis functions :

p)=Y B, (w)p,

B,,(u)1s a polynomial of degree d except at the knots

over interval (u ) and O elsewhere

imin?uimax

Note :'B-Spline' comes from 'Basis Spline'as B, () form a basis for

the given knot sequences and degree

Many possible choices of basis functions

Want to choose a set which give local smoothness and control



Cox -deBoor recursion:

l u,<u<u,,

B ,(u)=
K9 0 otherwise
U—u U, . —Uu
B, (u) = ‘ BK,d—l (u)+—< By 141 (u)
Uprg — U Uprg — Uy

B, 1s constant over one interval and zero elsewhere
B, 1s linear over 2 intervals and zero elsewhere
B, 1s quadratic over 3 intervals and zero elsewhere

B, 1s order d polynomial nonzero over d + 1 intervals betweenu, <u<u,_ .,

uk+1
uk+1 uk+2

U, Up 4 Uy Uy . 2 Uy Up 3



Generalised B - spline using Cox - deBoor basis functions
- C*' continuity at knots
- splineis inside the convex hull of the points
0<B,(u)<I

iBid(u) =1

- each control poimnts p, affects only d +1 intervals
therefore the curve segment 1s within the convex hull

defined by d +1 points



Knot Values
Thus far we have only constrained knot values such thatu, <u,,
-1f knots are equally spaced we have 'uniform spline'

- greater flexibility can be achieved with non - uniform spacing

- we can have multiple repeated knotsu, =u, ,, by defining : % =1 1n recursion

Uniform B-Spl Pue TP
-Splines
p /_\
- using 3rd order spline with Cox - deBoor basis Pra1® °p, .,
-pomts {p, ,, Pi>Pi> Prsrs control curve between u, ,u, .,
| ] | ] | |
Up21 Yp Upia1 Yo

Uniform Periodic B - Spline

- repeat start and end control pomts to forma closed curve

pO:pm—l plzpm



Non - Uniform B -Splines
- Repeating knots pulls the spline closer to the control points
use to introduce discontinuities in the spline
- Repeating knots at the ends forces interpolation of the end points
a common knot sequence for open splines[0,0,0,0,1,2,....,n-1,n,n,n,n]j

- Knot sequence[0,0,0,0,1,1,1,1]gives the cubic Bezier curve



NURBS: Non-uniform Rational B-Spline

Further generalisation of B -Splines to rational functions
2 additional properties
(1) B-splines are distorted under perspective transforms (not Affine)
NURBS ensure curves/surfaces are handled correctly under perspective
(2) Quadrics (elipse, circle....) can only be approximated by B - splines
Quadrics are a special case of Quadratic NURBS

Represent p(u) in homogenous coordinates where

The weighted homogenous coordinate for a control point is

q;, =W

Use weights to increase/decrease the importance of a control point



In homogenous coordinates the spline is defined by four functions

for the first three components we have a set of basis functions with

weighted control points
[ x(u) | [ X, |
yu) | & : Y
u)= = > B (u)q. =) B, (u)w,
qw)=|" )| = 2 Buwa =2 By (w
 w(u) | |1

We transform q(u) to p(u) by perspective division with the function w(u)

_x(u)_ 1 i;,Bid(u)Wipi
pu)=| y(u) =) q(u) ==,
| z(u) | ZBz’d(u)wz’

Each component of p(u) is a rational function

Perspective division results in a representation which can obtain the
same curve/surface under perspective viewing conditions

The knot points are not restricted in any way

'Non - uniform Rational B - splines' NURBS



Summary

Derived a set of curve/surface representation who’s shape
1s controlled by a set of control points:
Cubic curves
- Interpolating: pass through control points (rough)
- Hermite: interpolate end-points+end-point derivatives
(smooth)
- Bezier: special case of Hermite defined from control points
All have problems of continuity between adjacent segments

Cubic B-spline curves:
- continuity between adjacent segments
- 4-control points define central part of curve
- gives C? continuity
- represent as a set of basis functions acting on control points

NURBS: Non-uniform rational B-splines
- preserve shape under perspective transforms
- widely used in CAD/graphics



