Curves and Surface I

Angel Ch.10



Representation of Curves and Surfaces

Piece-wise linear representation 1s inefficient
- line segments to approximate curve
- polygon mesh to approximate surfaces
- can not approximate general curves exactly
- only continous in position (not derivatives)

Modelling of smooth curves and surface
- ‘smooth’ continuous in position and derivatives (1st/2nd...)
- exact representation of non-planar objects

Representation of curves and surfaces:

(1) Explicit: y=g(x)
(2) Implicit: f(x,y)=0
(3) Parametric: x=x(u), y=y(u)

Parametric forms commonly used in computer graphics/CAD



Explicit Representation of Curves

Curves in 2D
y=g(Xx) 1s a general curve 1n X,y space
x independent variable
y dependent variable

Inverse relation: x=h(y) - inverse may not exist

Example: 2D Line y=ax+b a-slope
b-intersection with y-axis
Problem with representing a vertical line a=infinity

Example: 2D Circle radius r
y= 72 2

- explicit equation only represent half the circle



Explicit Curves in 3D
The 3D explicit representation of a curve requires 2 equations

y=g(x)
7=1(Xx) - y,z are both dependent variables

Example: Line in 3D
y=ax+b
z=cx+d
- cannot represent a line in a plane of x=const

Explicit representation of a surface
z=1(X,y)
- 2 independent variables X,y
- z dependent variable
Cannot represent a full sphere
z= \/ rr—x"—y

2



Explicit representations are co-ordinate system dependent
- can not represent all curves such as lines/circles
- Curves exist independent of any representation
- failures causes serious problems in graphics/CAD



Implicit Representation

2D Curves: {(x,y)=0
-f() is a ‘'membership  testing function
(x,y) 1s on the curve 1f f(x,y)=0
- In general no analytic way to find points on the curve
ie to evaluate y value corresponding to given x
- overcomes some of coordinate system dependent problems
- represents all lines and circles

Example: 2D Line ax+by+c=0
- represent vertical line a=-1, b=0

Example: 2D Circle x> +y°—7r>=0
- represents the entire circle



3D Surfaces: {(x,y,z)=0
- membership test is (X,y,z) on the curve or surface
- general representation in 3-space
- represents any plane or line 1n 3-space

Plane: axtby+tcz+d=0
- slopes a,b,c wrt x,y,z-axis

Sphere of radius r: X’ +y°+z°=r* =0

3D Curves:
- not easily represented in 3D
- intersection of two 1mplicit surfaces
f(x,y,z)=0
g(x,y,2)=0
point (X,y,Z) on curve must be a member of both function
- line represented by intersection of 2 planes



Algebraic surfaces
- class of implicit surfaces where f(x,y,z) 1s a
polynomial function of the three variables

d + Z(al.xi +hy' +c.z')=0
i=1
is an n order polynomial

- quadric surfaces n=2 are of particular importance
as they represent several common surfaces
sphere, cone, torus, ellipsoid

Quadrics have the property that intersection with a line
gives at most 2 intersection points (used for rendering)



Parametric Representation

Parametric curve in 3-space 1s a function of 1-parameter, u

x=x(u) y
y=y(u)
z=z(u) pw
- general representation
- same 1n 2-space and 3-space :

- u is independent variable and x,y,z dependent

Curve can be written as the set (locus) of points:
p(w) = [x(u) y(u) z(u)]

Derivative of curve:

o) - partial derivative wrt each function

dut - points in the direction tangent to
dp(u) _| dyw) the curve
i djflu) - magnitude 1s rate of change wrt to u
| du | (velocity)



Example: 3D Line

p@)=op +(1-a)p,

=) y, |[+U-a)| y,

Derivatives:

dp(or)

do

X1 Xy

| 21 | 22 _

_xz +a(x, _xz)_

yyto(y, —y,)
 Z, + oz, —22)_

(x; —x,)

=p(@)=|(y,—,)

_(Zl _Zz)_



Parametric surface:
x=x(u,v)
y=y(u,v)
z=7z(u,Vv)
- 2 independent parameters u,v

p(u,v) =[x(uw,v) y(wv) zuv)]'

Partial Derivatives
[ 0x(u, V) |
S . du X (u,v)
pw) _ |y ||
du du
oz(u,v) | Lz, V)
| du
dp(v) _
d(V) — pv

- Partial derivatives represent the tangent plane



Parametric representation

- widely used in computer graphics for curves and surfaces
and CAD

- general representation of many forms.

- simple computation of derivatives

- requires a parameterization (u,v) of the surface
ie underlying 2D coordinate system for a 3D surface

- representation depends on 2D coordinate system

- polynomial parametric forms used to represent a
wide variety of surfaces.
How can we define the parametric form of a surface?



Parametric Polynomial Curves
x(u)

A parametric curvein 3 -spaceis represented as : p(u) =| y(u)

| 2(u)_

A polynomial parametric curve of degree nis given by :
p(u)= 2 “kck
k=0

where ¢, 1s a column matrix with independent coefficientsin x, y,z

ka

C =|Cpy

| Cok

The parametric curve has 3(n +1) degrees of freedom,

giving 3 independent sets of equations :

x(u) — Zukcxk y(u) — Zukcyk Z(u) — Zukczk
k=0 k=0 k=0



We can define the curves x(u), y(u), z(u) over a range of u

U SUSU_

- p(u) over this range gives a curve segment

A
PG )
o
(_\J
p(umin)
|t

Without loss of generality we can define the curve segment:

0 <u<l



Parametric Polynomial Surfaces

Define a surface by n and m order polynomials in u and v

[ x(u,v) | o
pu,v)=| y(u,v) =22ukvjcjk
| z(u,v) | =0

Surface has 3(n+1)(m+1) degrees of freedom

Usually, n=m and we parameterize u,v over the range 0,1 giving
a surface patch.

The surface can be viewed in the limit as a collection of curves
generated by holding u or v constant



Partial Derivatives
_xu (u,v)_
p,w,v)=|y,w,v)|=

|z, (u,v) |

_xv(u,v)_

p,(w,v)=| y,(u,v)|=

|z, (u,v)

2nd Order Partial Derivatives

_xu (u,v)_

puu(u9v): yu(u,v) :sz(k_l)uk_zvjcjk

|z, (u,v) |

P, v)=p, (uv)=|y,,v)




Design Criteria

Representations of curves and surfaces in computer graphics
and CAD should satisfy the following:
 Local control of shape
* Smoothness and continuity
* Direct evaluation of derivatives
* Stability
(small change in parameters gives a small change in shape)
 Fast Rendering

Use representations based on low-order parametric polynomials to
satisfy the above

Desired

|

Approximate




Local Control of Shape

- 1deally control local shape with a set of local parameters
rather than global change in shape
- easier to design desired shape

Represent curve shape p(u) by a set of ‘control points’:

.pl

Ps3
0. W

opZ

- local curve shape 1s based on the position of the control points

Interpolating curve: passes through all control point



Smoothness and Continuity

‘Smoothness’ of a curve refers to the continuity of derivatives of the
curve

For a parametric curve all derivatives exist and are continuous

p(u) = chuk p, () :Z ke u*! p,, ()= Zk(k ~Decu > ...
k=0 k=1 k=2

For two curves meeting at a join point the smoothness 1s defined
by the highest derivative which 1s continuous

Join point

p(1) = q(0)
eq(1)

q(u)

discontinuity in 1st derivative continuous in 1st derivative



Parametric Continuity C”
- highest order derivative with respect to parameters

which 1s continous
C’: p(1)=q(0)
C':p,(1)=4q,(0)

2, _
Derivatives are continous 1in parameter space u and

consequently the curveis continous in 3 - space

p(1) = q(0)
oq(1)

p(0) & p(u)

q(u)



Geometric Continuity G”
- derivatives in 3 - space are in the same direction but
different magnitude
1,
- tangents to curve are in the same direction
- requires only 2 constraints on derivates rather than 3
use remaining free parameter to control shape
G*: p,, (1)< q,,(0)
- curvature is in the same direction




Parametric Cubic Polynomial Curves

What 1s the correct order of polynomial curve

- low-order: less flexible

- high-order: costly, bumpy (too many degrees of freedom)
Designing curve locally by a set of control points we can
use a low-order curve to approximate complex shapes.

Cubic polynomial curves are widely used:

3
2 3 k T
pu)=c,+cu-+cu +cu zz‘cku =u'c

k=0
Co 1 _
Cix
c, U
c = U= c, =|c
2 k
c, u 4
3 | Ckz |
c, U

12 equations in 12 unknowns ¢

Want methods of deriving parameters ¢ for a desired curve!



Cubic Polynomial Interpolation

Given a set of 4 -points (1€ 12dof) derive curve that interpolates

between them and exactly passes through them :

_Xi ] Py
p,=|y;| i=0..3 2
Z. Po

1

Ps
What are the coefficients ¢ such that the curve p(u)=u'c

interpolates the points p,

Let the points be at equally spaced intervals along the curveu =0,
This gives the four conditions :

po=p(0)=c¢,
p=p@=c+ie+E) e+ ()
p,=p(3)=c+3e+3) e, +3) ¢
p;=p()=c,+c +c, +c;

1z
33



In matrix form: p = Ac

Po Xo Vo 2o 10 0
D= Pi| [ X1 N 4 A= I3 (%)2 (%)3
= = = 2
P> Xy Vo 2y 1 % (%) (%)3
PRS2 1 1 1 1]

p,c are 4x3 element matricies

We know control points p, want unknown curve parametersc

(12 equations in 12 unknowns) :

c=A"p=M,yp
A—1snon -sigular and can be inverted to obtain the 'interpolating matrix'M,
1 0 0 0 |
M, = A = -5.5 9 —-4.5 1

9 -225 18 —45
—45 135 -135 4.5 |

M, - defines the curve that interpolates a given set of 4 control points




Given a sequence of control points p,, p,....p,,
we can define a set of cubic interpolating curves each

defined by a group of four control points :

pO ..... p3 ",-'.'-.~~ " p6
Py .

p3 ..... p6 pO pl p3 p..5-

De-ere-Do P2

If we letu =[0,1]for each segment then each segment has same M,

Resulting curve has C’ continuity for each segment but only C° between segments



Blending Functions

We can consider the interpolation as the combination of

control points p. according to a set of blending functions b, ()
pw = u'c=u"M,p=bu) p
_bo (u)_
b, (u)
b,(u)
_b3 (u)_

b(u)=Mu=

Each blending function b, (#)1s a polynomial in u which

weights or 'blends' together the individual contributions of each point :

p(u) =by(w) P+, (W) P, +b,(W) P, +b,(W) p, = 3 b, (W),



Blending functions for cubic interpolation :

A byw) by(a)

by() =2 (u—1)(u—2)(u 1)
biw) =Zu(u—2)(u—1) XA
b,(w)=—Zu(u—1)(u-1) [ AR

by(w) = u(u—3)w—3)
Note : Blending function are symmetric aboutu =1
All zeros of the blending functions are in the interval [0,1]
- blending functions must vary substantially over [0,1]
ie rapid changes
- results from requirement that curve pass through all
control points

This results in limited usefulness of ‘interpolating’ cubic polynomial
+ polynomial 1s discontinuous between sections

Apply same derivation process to polynomials with other constraints



Cubic Interpolation Patch
Extension of interpolating curve to a surface

Bicubic interpolating surface patch is defined by 16 points :

p(u,v)= iiuivjcij =u’'Cy

i=0 j=0
Coo Co1 Coo Coz 1 1
Co €1 € G u v
Crp €y €y Cp u v
3 3
| G0 G351 G5y Cy U |V

Cij = [Cxij Cyij sz‘j]
C - has 48 coefficients which we want to find to evaluate the surface

which interpolates a given set of points



Asin the case of a curvelet the control points
p; =p(u,v) foru,v=0,1,%.1
Applying these equations for the individual control points (as in the curve case)

we obtain 16 equations relating the known points p, to unknown coefficients c,,

Consider the curvev =0 (fora curve p(u) = uTMZp)

Poo 1
0
pw,0)=u"M, Pro =u'C
P2o 0
| P3o 0]

This 1s the same as we had for the coefficients of a curve defined by 4 points
Likewise, we obtain similar expressions forv=1,2 1

Putting the curves together in a single equation we obtain :
u'MP=u"CA" =u"CM,”
M, "is the transpose of the inverse of M,

Solve this for the unknown coefficients
C=M,PM/

P is the matrix of 16 points



Substituting this into the equation for a surface gives
pu,v)y=u'M,PM/v
This defines the bicubic surface patch which interpolates the 16 control points

The bicubic surface patch can be interpreted as the interpolation of a

set of curvesin u corresponding to each valueof v

Alternatively, can consider the surface as the interpolation of a set of

blending function inu and v

b(u) = MlTu

pu,v= Y bwb,(v)p,

i=0 j=0
Each term b,(1)b (v) describes a blending patch for point p,,
Surface is formed by blending together patches for 16 points
- interpolating functions are separable 'separable surface'
As for bicubic interpolating curves patches are not smooth (all zerosin[0,1])

Example of a 'tensor product' surface - surface formed by curves



Hermite Curves and Surfaces

Rather than interpolating points we interpolate between
endpoints + tangents at end points

- ensures continuity between curve/surface segments

Hermite Form of a Curve define constraints as : yA

Curve intersects end - points P(0)

p0)=p, =c, p()=p,=c,+¢, +c, +c, p(o)%—p(\l)\\:g(l)
Constrain the tangent at the end - points /

p.(0)=¢ p.(D=c¢, +2c, +3c, i

In matrix form :

p(@® ] [1 0 0 0]
p(1) 1 1 1 1
q: = C
p,(O)[ [0 1 0 0
p.D] [0 1 2 3]



Solve equations to find:

1 0 O
: : : 0O 0 1

c=M,q Gives'Hermite geometry' matrix M, = 3 3 5
2 -2 1

Resulting polynomialis given by :

pu)y=u'M,q

This can be represented as a set of blending functions on the points :
pu)=b)" q

2u® —3u® +1

—2u’ +3u’

w —2u’ +u

b(u)=Mu=

3 2
u —u

The four blending functions have none of their zero's in[0,1]

- smoother than interpolating blending function

_— e OO




Hermite polynomials can be used to represent a curve with continuous derivates

- such that the end point of one curve has the same derivative as the start point
of the adjacent curve

p(1)=4(0)

r.(D=¢,(0)

where p(u) and q(u) are adjacent section of the curve with u =[0,1] for both

giving a C' continous curve
pO(1) = q9(0)

p(1) = q(0)
q(1)

p(0)

This overcomes the problem with interpolating cubics
where the end-points were only continuous in position



Hermite surface patch :
3 3
p(u,v) =Y bwh,(u)g,
i=0 j=0
1s defined to interpolate the 4 corner points and their derivatives
At corner (0,0) we define :

p0,0)=¢,, p,0,0)=c¢c, p,(0,0)=¢c, p,(0,0)=c],
Solving gives a surface patch which is continous in position and 1st

derivative between adjacent patches.
Therefore, Hermite surface patch has advantages over the direct interpolation.

Derivatives can be defined from the input control points

1€ p, = Poo — Por



Summary

Surface representation
- explicit
- implicit
- parametric
parametric forms are widely used in computer graphics

Parametric forms
- Interpolating curves and surfaces

Next lecture: other parametric forms of surfaces
Hermite, Bezier, B-Spline, NURBS



