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Representation of Curves and Surfaces 

Piece-wise linear representation is inefficient 
 - line segments to approximate curve 
 - polygon mesh to approximate surfaces 
 - can not approximate general curves exactly 
 - only continous in position (not derivatives) 

Modelling of smooth curves and surface 
 - ‘smooth’ continuous in position and derivatives (1st/2nd…) 
 - exact representation of non-planar objects 

Representation of curves and surfaces: 
 (1) Explicit: y=g(x) 
 (2) Implicit: f(x,y)=0 
 (3) Parametric: x=x(u), y=y(u) 

 
Parametric forms commonly used in computer graphics/CAD 



Explicit Representation of Curves 

Curves in 2D  
       y=g(x)     is a general curve in x,y space 
   x independent variable 
   y dependent variable 

 
          Inverse relation: x=h(y)     - inverse may not exist 

Example:  2D Line   y=ax+b           a-slope  
       b-intersection with y-axis 
 Problem with representing a vertical line a=infinity 

Example: 2D Circle radius r 
 

 - explicit equation only represent half the circle 
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Explicit Curves in 3D 
  The 3D explicit representation of a curve requires 2 equations 

 y=g(x) 
 z=f(x)                      - y,z are both dependent variables 

 
Example: Line in 3D  

 y=ax+b  
 z=cx+d 
    - cannot represent a line in a plane of x=const 

Explicit representation of a surface 
 z=f(x,y) 
    - 2 independent variables x,y 
    - z dependent variable 

    Cannot represent a full sphere 
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Explicit representations are co-ordinate system dependent 
 - can not represent all curves such as lines/circles 
 - Curves exist independent of any representation 
 - failures causes serious problems in graphics/CAD 



Implicit Representation 

2D Curves: f(x,y)=0 
 - f() is a ‘membership’ testing function 
    (x,y) is on the curve if f(x,y)=0 
 - In general no analytic way to find points on the curve 

                ie to evaluate y value corresponding to given x 
 - overcomes some of coordinate system dependent problems 
 - represents all lines and circles 

 

Example: 2D Line    ax+by+c=0 
 - represent vertical line a=-1, b=0 

Example: 2D Circle  
 - represents the entire circle 
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3D Surfaces:  f(x,y,z)=0 
 - membership test is (x,y,z) on the curve or surface 
 - general representation in 3-space 
 - represents any plane or line in 3-space 

Plane:     ax+by+cz+d=0 
 - slopes a,b,c wrt x,y,z-axis 

Sphere of radius r: 02222 =−++ rzyx

3D Curves: 
 - not easily represented in 3D  
 - intersection of two implicit surfaces 
     f(x,y,z)=0 
     g(x,y,z)=0      
    point (x,y,z) on curve must be a member of both function  
 - line represented by intersection of 2 planes 



Algebraic surfaces  
 - class of implicit surfaces where f(x,y,z) is a  
   polynomial function of the three variables 

 
 
 

   is an nth order polynomial  
  
 - quadric surfaces n=2 are of particular importance 
    as they represent several common surfaces 
    sphere, cone, torus, ellipsoid 

 
    Quadrics have the property that intersection with a line 
    gives at most 2 intersection points (used for rendering)  
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Parametric Representation 

Parametric curve in 3-space is a function of 1-parameter, u  
 x=x(u) 
 y=y(u) 
 z=z(u)    
              - general representation  
              - same in 2-space and 3-space 
              - u is independent variable and x,y,z dependent  

 
Curve can be written as the set (locus) of points:  

 p(u) = [x(u) y(u) z(u)]  

Derivative of curve: 
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- partial derivative wrt each function 
- points in the direction tangent to 
  the curve  
- magnitude is rate of change wrt to u 
  (velocity) 



Example: 3D Line 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−+
−+
−+

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

−+=

)(
)(
)(

)1(

)1()(

212

212

212

2

2

2

1

1

1

21

zzz
yyy
xxx

z
y
x

z
y
x

ppp

α
α
α

αα

ααα

Derivatives: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

==
)(
)(
)(

)()(

21

21

21

zz
yy
xx

p
d
dp α

α
α

α



Parametric surface: 
 x=x(u,v) 
 y=y(u,v) 
 z=z(u,v) 

                            - 2 independent parameters u,v 
 
           p(u,v) = [ x(u,v)   y(u,v)   z(u,v)]T                  

plane tangent therepresent  sderivative Partial -        
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Parametric representation  
 - widely used in computer graphics for curves and surfaces 
    and CAD 
 - general representation of many forms. 
 - simple computation of derivatives 
 - requires a parameterization (u,v) of the surface 
   ie underlying 2D coordinate system for a 3D surface 
 - representation depends on 2D coordinate system 
 - polynomial parametric forms used to represent a  
   wide variety of surfaces.  
    How can we define the parametric form of a surface? 



Parametric Polynomial Curves 
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We can define the curves x(u), y(u), z(u) over a range of u 

maxmin uuu ≤≤

        - p(u) over this range gives a curve segment  

Without loss of generality we can define the curve segment: 

10 ≤≤ u



Parametric Polynomial Surfaces 

Define a surface by n and m order polynomials in u and v  
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Surface has 3(n+1)(m+1) degrees of freedom 
 

Usually, n=m and we parameterize u,v over the range 0,1 giving 
a surface patch. 
 
The surface can be viewed in the limit as a collection of curves  
generated by holding u or v constant 
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Design Criteria  
Representations of curves and surfaces in computer graphics  
and CAD should satisfy the following: 

•  Local control of shape 
•  Smoothness and continuity 
•  Direct evaluation of derivatives 
•  Stability  

(small change in parameters gives a small change in shape) 
•  Fast Rendering 
 

Use representations based on low-order parametric polynomials to  
satisfy the above 



Local Control of Shape 

- ideally control local shape with a set of local parameters 
  rather than global change in shape 
- easier to design desired shape 
 
Represent curve shape p(u) by a set of ‘control points’: 

- local curve shape is based on the position of the control points 
 
Interpolating curve: passes through all control point 



Smoothness and Continuity 

‘Smoothness’ of a curve refers to the continuity of derivatives of the  
curve  
 
For a parametric curve all derivatives exist and are continuous  
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For two curves meeting at a join point the smoothness is defined  
by the highest derivative which is continuous 

discontinuity in 1st derivative continuous in 1st derivative 
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Parametric Cubic Polynomial Curves 

What is the correct order of polynomial curve 
 - low-order: less flexible 
 - high-order: costly, bumpy (too many degrees of freedom) 

Designing curve locally by a set of control points we can  
use a low-order curve to approximate complex shapes. 
 
Cubic polynomial curves are widely used:  
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Cubic Polynomial Interpolation 
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Blending Functions 
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All zeros of the blending functions are in the interval [0,1] 
 - blending functions must vary substantially over [0,1] 

               ie rapid changes  
 - results from requirement that curve pass through all  
   control points 

 
This results in limited usefulness of ‘interpolating’ cubic polynomial 
  + polynomial is discontinuous between sections  
 
Apply same derivation process to polynomials with other constraints 
 



Cubic Interpolation Patch 

Extension of interpolating curve to a surface 
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Hermite Curves and Surfaces 

Rather than interpolating points we interpolate between 
endpoints + tangents at end points  

 - ensures continuity between curve/surface segments 
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Summary 

Surface representation 
 - explicit  
 - implicit 
 - parametric 

   parametric forms are widely used in computer graphics  
 
Parametric forms 

 - Interpolating curves and surfaces 
  

 Next lecture: other parametric forms of surfaces  
            Hermite, Bezier, B-Spline, NURBS 


