Hierarchical Graphics and Animation

Angel Ch.8, Watt and Watt Ch.16

Hierarchical Models

Hierarchical models used to represent complex objects

- explicit dependency between sub-parts of an object
- object-oriented approach to implementation
- eg Articulated objects (robot arm)

Scene hierarchical uses to represent all objects in as a hierarchy

- shapes/lights/viewpoints/transforms/attributes
- 'Scene Graph'

Scenes can be represented non-hierarchically

- leads to difficulties in scaling to large scale complex scenes
- all functions explicit in *display()* function
- inflexible

Design of graphics systems with multiple objects

- hierarchical models
- object-oriented design
- scene graphs

Non-Hierarchical Modelling

- Treat object independently
- reference object by a unique symbol ie a,b,c....

Object initially defined in local object coordinates

Transform each object instance from local to world coordinates:


```
OpenGL display function:
```

```
glLoadIdentity();
    glTranslatef(...);
    glRotatef(...);
    glScalef(...);
    draw_object();
};
```

- All objects are treated independently
- display() function transforms/draws each object explicitly
- No interrelations between objects

Can represent objects by a table structure:

- each object has a symbol
- each object has corresponding translation/rotation/scale
- each object has set of attributes colour/material properties etc.
- render object by calling drawing each symbol in turn with specified transformation/attributes

Symbol	Scale	Rotate	Translate
1	s_x, s_y, s_z	υ _x , υ _y , υ	d_x, d_y, d_z
2	, , .	, , ,	~ , ~
3			
1			
1			

Hierarchical Models

Consider a more complex model composed of several sub-objects car = chassis + 4 wheels

Representation 1: Treat all parts independently (non-hierarchical)

- apply transformation to each part independently
 - chassis: translate, draw chassis

wheel 1: rotate, translate, draw wheel 1

wheel 2: rotate, translate, draw wheel 2

••••

- redundant, repeated computation of translate
- no explicit representation of dependence between chasis and wheels

Representation 2: Group parts hierarchically

- exploit relation between parts
- exploit similarity ie wheels are identical (just translated)

Graph Structures

Graph Representation

- **nodes:** objects + attributes? + transforms?
- edges: dependency between objects parent-child relation between nodes

'Directed-Graph' edges have a direction associated with them

Tree - directed graph with no closed-loops

ie cannot return to the same point in the graph

- 'root node': no entering edges
- Intermediate nodes have one parent and one or more children
- 'leaf node' : no children

Parameters such as location & attributes may be stored either in nodes or edges


```
This example demonstrates an explicit hierarchy
         - hard-coded in display function
         - hierarchy cannot be changed (inflexible)
Object-oriented hierarchical tree data structure
         Each node 'object' store
         (1) Transformation of object M
         (2) Pointer to function to draw object
         (3) Pointers to children
OpenGL psuedo code for single chain tree:
         display(){
                                      /* single call to recursive function */
             draw arm(root);
         draw arm(node){
              glTransform(node.M); /* apply model transform */
              node.draw();
                                      /* draw this part */
              draw arm(node.child); /* recursive call to children */
```

Example: Skeleton

Skeleton is a tree with multiple branches

Represent transformation matricies between each parent and child

- each matrix is the transformation of the object in local coordinates into the parents coordinates

How do we traverse the tree to draw the figure?

- Any order ie depth-first, breadth-first
- 2 methods to implement traversal:
 - (1) Stack based use matrix stack to store required matrices
 - (2) Recursive store matrix within nodes of data structure
- (1) Stack-based tree traversal
 - use matrix stack to store intermediate matrices
 - current ModelView matrix M determines position of figure in scene

```
draw_figure(){
    glMatrixMode(GL_MODELVIEW);
     glPushMatrix();
                          /* torso transform */
    draw torso();
    glTranslatef(...);
                          /* transform of head relative to torso */
    glRotatef(...);
    draw head();
    glPopMatrix();
                          /* restore torso transform */
    glPushMatrix();
                          /* left arm */
    glTranslate();
    glRotate();
     draw upperarm();
     glTranslate();
    glRotate();
    draw lowerarm();
    glPopMatrix();
                           /* restore torso transform */
    glPushMatrix();
                          /* right arm */
    glTranslate();
```

```
Can also use Push/Pop values from attribute stack ie colour etc. 
glPushAttrib();
glPopAttrib();
```

Limitation of stack-based approach:

- explicit representation of tree in single function
- relies on application programmer to push/pop matrices
- hard-coded/inflexible source code must be changed for different hierarchical structure
- no clear distinction between building a model and rendering it

(2) Recursive tree data-structures

- each node is a recursive structure with pointers to children
- use a standard tree structure to represent hierarchy
- render via tree traversal algorithm (independent of model)

```
C++ Implementation:
C Implementation:
     typedef struct treenode {
                                                           class treenode{
         Glfloat m[16];
                                                                public:
         void (*draw)();
                                                                  void draw();
         int nchild;
                                                               private:
         struct treenode *children;
                                                                   Glfloat m[16];
    } treenode;
                                                                   int nchild;
                                                                   treenode *children;
    void draw_tree(treenode *node){
                                                            };
         glPushMatrix(); /* save transform*/
         glMultMatrixf(node->m);
                                                            void treenode::draw(){
         node->draw();
                                                                 glPushMatrix();
         for (i=0; i < node-> nchild; i++)
                                                                           ....
            draw_tree(node->children[i]);
         glPopMatrix(); /* restore transform */
                                                                 glPopMatrix(); ..
```

Graphical Objects and Hierarchies

Represent all objects of a scene in a single hierarchy

- Shape (geometric objects points/lines/polygons...)
- Lights
- Viewer
- Material Properties (attributes)

'Object-Oriented' approach

- each object is self-contained module
- Application programmer does NOT have to know internal representation
- Data encapsulation (no external use of pointers to member data)
- interface to access object via methods
- reuse code

Tree-structure to represent complex objects

- reuse primitive object in multiple instances
- represent hierarchical relation (parent-child) between objects
- Use inheritance (C++) to derive complex objects from simple primitives: Object B 'is a' instance of object A
- Examples: Car, skeleton

Scene Graphs

Represent all objects in a hierarchy:

- Shape/Lights/Cameras

Scene graph represents explicitly the relationship between objects

- render by traversing the graph
- state attributes/matrices are restored for each branch in graph (Push/Pop)

Object-Oriented Graphics API

- layer on top of OpenGL or other graphics API
- represent scene with a 'scene-graph'
- render the scene graph by tree traveral using OpenGL
- SGI Open Inventor/VRML/ DirectX/Java-3D
- OpenSceneGraph, OpenSG

Animation

Articulated Model - Kinematic chain of Rigid Parts

- Control by a small set of parameters (joint angles)

Forward Kinematics

- give a set of joint angle parameters $\vec{\phi}$

$$\begin{split} x_e &= f(\vec{\phi}) \\ &= M(\theta_1) M(\theta_2) M(\theta_3) M(\theta_4) x \end{split}$$

- no dynamics (forces, mass, inertia)

- joint angles generated manually from **key-frames** interpolation used to fill in intermediate frames

- captured from markers on a real-subject

Avatartool

Inverse Kinematics

Given a desired end-effector position x_e what combination of joint angles will produce this position

$$\vec{\phi} = f^{-1}(x_e)$$

Used for interactive character positioning ie moving end-effector changes arm joint angles

Problem: Multiple solutions for a given end-effector position

- in general there is no unique inverse

2-Link chain 2 solutions

Solution of Inverse Kinematics Problems for Animation

Consider the forward kinematics equation:

$$x_e = f(\vec{\phi})$$

 $x_e - n$ dimensional vector position of end effector

 $\vec{\phi}$ – m dimensional vector of joint angles

Jacobian matrix *J* is the matrix of partial derivatives relating an infinitesimal change in each of the parameters to the change in end-effector position

$$\Delta x_e = J(\vec{\phi}) \Delta \vec{\phi}$$

J is an nxm matrix of partial derivatives

$$J_{ij} = \frac{\partial x_i}{\partial \theta_i} = \frac{\partial f_i(\vec{\phi})}{\partial \theta_i}$$

 J_{ii} is the partial derivative of end effector position x_i with respect to angle θ_i

The Jacobian is a local **linear** (first-order) approximation of the highly non-linear function f at a particular set of parameters $\bar{\phi}$

Solution of Inverse Kinematics using the Inverse Jacobian

Jacobian provides a local linear approximation of the rate-of-change of end-effector position x with respect to parameters $\bar{\phi}$

Inverse Jacobian is a local approximation of the rate of change of parameters $\bar{\phi}$ with respect to the end effector position x

Use this to interactively move the end-effector position x towards the desired position:

$$x_{new} = x_{current} + \Delta x_e = x_{current} + \Delta (x_{goal} - x_{current})$$

$$\Delta$$
 – step length

The corresponding change in step length is given by:

$$\vec{\phi} = f^{-1}(x_e)$$

$$\Delta \vec{\phi} = J^{-1}(\vec{\phi}) \Delta x_e$$

 $J^{-1}(\vec{\phi})$ is the inverse on an nxm matrix (not square) - requires **psuedo-inverse** computation

$$\vec{\phi}_{new} = \vec{\phi}_{curr} + \Delta \vec{\phi} = \vec{\phi}_{curr} + J^{-1}(\vec{\phi}_{curr}) \Delta x$$

Approximation is only valid locally at $\bar{\phi}$ therefore must take small steps to solution

Example Constructing the Jacobian Matrix J for a 2-link Chain in 2D

Forward kinematic equation:

$$x_e = f(\vec{\phi})$$

For a 2-link chain in 2 dimensions:

$$\begin{aligned} x_e &= f(\theta_1, \theta_2) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \\ x_1 &= l_1 \cos(\theta_1) + l_2 \cos(\theta_1 - \theta_2) \\ x_2 &= l_1 \sin(\theta_1) + l_2 \sin(\theta_1 - \theta_2) \\ x_e &= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} l_1 \cos(\theta_1) + l_2 \cos(\theta_1 - \theta_2) \\ l_1 \sin(\theta_1) + l_2 \sin(\theta_1 - \theta_2) \end{bmatrix} \end{aligned}$$

Example Constructing the Jacobian Matrix J for a 2-link Chain in 2D

$$x_e = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} l_1 \cos(\theta_1) + l_2 \cos(\theta_1 - \theta_2) \\ l_1 \sin(\theta_1) + l_2 \sin(\theta_1 - \theta_2) \end{bmatrix}$$

$$x_2 \downarrow l_1$$

$$\theta_1$$

Jacobian J relating a change in joint angle to a change in end effector position:

$$\begin{split} \Delta x_e &= J(\bar{\phi})\Delta\bar{\phi} \\ \Delta x_e &= \begin{bmatrix} \Delta x_1 \\ \Delta x_2 \end{bmatrix}, \Delta\bar{\phi} = \begin{bmatrix} \Delta\theta_1 \\ \Delta\theta_2 \end{bmatrix} \end{split}$$

Partial derivative:
$$J_{11} = \frac{\partial x_1}{\partial \theta_1} = -l_1 \sin(\theta_1) - l_2 \sin(\theta_1 - \theta_2)$$

$$J_{12} = \frac{\partial x_1}{\partial \theta_2} = l_2 \sin(\theta_1 - \theta_2)$$

$$J_{21} = \frac{\partial x_2}{\partial \theta_1} = l_1 \cos(\theta_1) + l_2 \cos(\theta_1 - \theta_2)$$

$$J_{22} = \frac{\partial x_2}{\partial \theta_2} = -l_2 \cos(\theta_1 - \theta_2)$$

Example Constructing the Jacobian Matrix J for a 2-link Chain in 2D

$$x_e = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} l_1 \cos(\theta_1) + l_2 \cos(\theta_1 - \theta_2) \\ l_1 \sin(\theta_1) + l_2 \sin(\theta_1 - \theta_2) \end{bmatrix}$$

$$x_2 \downarrow l_1$$

$$\theta_1$$

Jacobian J relating a change in joint angle to a change in end effector position:

$$\Delta x_{e} = J(\vec{\phi})\Delta \vec{\phi}$$

$$\Delta x_e = \begin{bmatrix} \Delta x_{e1} \\ \Delta x_{e2} \end{bmatrix}, \Delta \vec{\phi} = \begin{bmatrix} \Delta \theta_1 \\ \Delta \theta_2 \end{bmatrix}$$

$$J = \left[\begin{array}{cc} J_{11} & J_{12} \\ J_{21} & J_{22} \end{array} \right] = \left[\begin{array}{cc} -l_1\sin\theta_1 - l_2\sin(\theta_1 - \theta_2) & l_2\sin(\theta_1 - \theta_2) \\ l_1\cos\theta_1 + l_2\cos(\theta_1 - \theta_2) & -l_2\cos(\theta_1 - \theta_2) \end{array} \right]$$

$$\Delta x_e = \begin{bmatrix} \Delta x_1 \\ \Delta x_2 \end{bmatrix} = \begin{bmatrix} -l_1 \sin \theta_1 - l_2 \sin(\theta_1 - \theta_2) & l_2 \sin(\theta_1 - \theta_2) \\ l_1 \cos \theta_1 + l_2 \cos(\theta_1 - \theta_2) & -l_2 \cos(\theta_1 - \theta_2) \end{bmatrix} \begin{bmatrix} \Delta \theta_1 \\ \Delta \theta_2 \end{bmatrix}$$

Geometric Evaluation of Partial Derivatives

Constructing Jacobians algebraically is tedious for complex kinematic chains and trees - more direct geometric approach

Consider a general kinematic chain where each link has a rotation θ_i about a unit length axis w_i

 $\theta_j \vec{w}_j$ angle-axis representation of an arbitrary rotation R_i

What is the partial derivative:

$$X_e = f(\varphi)$$
$$J_{ij} = \frac{\partial x_i}{\partial \theta_i}$$

 $\frac{\partial x_i}{\partial \theta_j}$ rate-of-change of i^{th} end-effector position coordinate with respect to change in j^{th} joint parameter θ_j

Geometric computation of the Jacobian

Rate-of-change end-effector position wrt parameter θ_i

- depends only on section of chain from joint i to the end-effector

- rigid wrt θ_i (all other degrees of freedom are constant)

Equivalent to having a single rigid link from the i^{th} joint to the end-effector:

Example: 2D Rotation in the plane

Consider the single link in a plane orthogonal to the rotation axis: $\vec{w} l_{ie} = 0$

Can compute partial derivative for rate-of-change in end effector position wrt the i^{th} joint without considering intermediate joints which are rigid (constant)

$$x_e = l_{ie}(\cos\theta_i, \sin\theta_i)$$

Note: l_{ie} is constant w.r.t θ_i

$$\frac{\partial x_e}{\partial \theta_i} = l_{ie}(-\sin \theta_i, \cos \theta_i)$$

Geometric computation of Jacobian for general 3D rotation

A general 3D rotation axis w is not orthogonal to the link axis

Vector l_{ie} can be split into two components:

component parallel to
$$w_i$$

$$v_{para} = (w_i \cdot l_{ie}) w_i$$

component orthogonal to w_i

$$v_{orth} = l_{ie} - v_{para} = l_{ie} - (w_i \cdot l_{ie})w_i$$

 v_{orth} is rotated about w_i by θ_i degrees

$$v_{orth_rot} = R(w_i, \theta_i) v_{orth}$$

Note : v_{para} is not changed by rotation about w_i

Therefore:

$$Rl_{ie} = Rv_{para} + Rv_{orth} = v_{para} + v_{orth_rot}$$

Now consider the vector u orthogonal to w_i and v_{orth} :

$$u = w_i \times v_{\text{orth}} = w_i \times l_{ie}$$

Rotation of v_{orth} in the plane orthogonal to w_i is

$$R(\theta_i, w_i)v_{orth} = v_{orth}\cos(\theta_i) + u\sin(\theta_i)$$

Rotation of line l_{ie} :

$$R(\theta_{i}, w_{i})l_{ie} = v_{para} + v_{orth_rot}$$

$$= v_{para} + v_{orth_rot} \cos \theta_{i} + u \sin \theta_{i}$$

$$= (w_{i} \cdot l_{ie})w_{i} + (l_{ie} - (w_{i} \cdot l_{ie})w_{i}) \cos \theta_{i} + (w_{i} \times l_{ie}) \sin \theta_{i}$$

$$= l_{ie} \cos \theta_{i} + (1 - \cos \theta_{i})(w_{i} \cdot l_{ie})w_{i} + (w_{i} \times l_{ie}) \sin \theta_{i}$$

This is the general expression for the rotation of a vector l_{ie} about an arbitrary 3D axis w_i through angle θ_i

Use this expression to compute the partial derivative of the end-effector postion with respect to the rotation of a specific joint

Note: This expression allows the Jacobian matrix to be computed directly from geometric operations on vectors.

Geometric computation of Jacobian for a kinematic chain

Given the expression for the 3D rotation about an axis w:

$$R(\theta_i, w_i)l_{ie} = l_{ie}\cos\theta_i + (1 - \cos\theta_i)(w_i \cdot l_{ie})w_i + (w_i \times l_{ie})\sin\theta_i$$

Can derive the rate of change in end - effector position wrt θ_i

For small θ_i we can make the approximation as $\theta_i \longrightarrow 0$ $\cos \theta_i \longrightarrow 1$ $\sin \theta_i \longrightarrow \theta_i$ This gives the approximation:

$$R(\theta_i, w_i)l_{ie} \approx l_{ie} + \theta_i(w_i \times l_{ie})$$

$$l_{ie} = (x_e - x_i)$$

For incremental changes $\Delta \theta_i = \theta_i w_i$

$$l_{ie_rot} = l_{ie} + \theta_i(w_i \times l_{ie})$$

$$\Delta x_{ie} = \Delta \theta_i \times l_{ie}$$

This is known as the 'moving axis formula'

- relates an incremental change in the angle to a corresponding change in the end effector position
- can be used to approximate a column in the Jacobian J_i

Geometric computation of Jacobian for a kinematic chain

Now consider the effect of all joints on the end effector

$$\Delta x_{ie} = \sum_{i=0}^{n} \Delta x_{ei} = \sum_{i=0}^{n} \Delta \theta_{i} \times l_{ie}$$

rate of change of position of the end - effector is the sum over all intermediate frames of the cross - product of the angular rate of change $\Delta\theta_i$ with the vector from the joint centre to the end effector

This is equivalent to the sum of the rate of change in end-effector wrt each joint

Example: of simple 2-link chain in 2D (see previous Example of analytic computation)

$$l_{l_e} = (l_1 \cos(\theta_1) + l_2 \cos(\theta_1 - \theta_2), \quad l_1 \sin(\theta_1) + l_2 \sin(\theta_1 - \theta_2), \quad 0)$$

$$l_{2e} = (l_2 \cos(\theta_1 - \theta_2), \quad l_2 \sin(\theta_1 - \theta_2), \quad 0)$$

$$w_i = (0,0,1)$$

$$\Delta \theta_1 = d\theta_1(0,0,1)$$
$$\Delta \theta_2 = d\theta_2(0,0,1)$$

$$\begin{split} \Delta x_e &= \Delta \theta_1 \times l_{1e} + \Delta \theta_2 \times l_{2e} \\ &= d\theta_1(0,0,1) \times l_{1e} + d\theta_2(0,0,1) \times l_{2e} \\ &= d\theta_1((-l_1 \sin(\theta_1) - l_2 \sin(\theta_1 - \theta_2), \quad l_1 \cos(\theta_1) + l_2 \cos(\theta_1 - \theta_2), \quad 0)) \\ &+ d\theta_2(l_2 \sin(\theta_1 - \theta_2), -l_2 \cos(\theta_1 - \theta_2), 0) \end{split}$$

$$\Delta x_e = \begin{bmatrix} \Delta x_1 \\ \Delta x_2 \end{bmatrix} = \begin{bmatrix} -l_1 \sin \theta_1 - l_2 \sin(\theta_1 - \theta_2) & l_2 \sin(\theta_1 - \theta_2) \\ l_1 \cos \theta_1 + l_2 \cos(\theta_1 - \theta_2) & -l_2 \cos(\theta_1 - \theta_2) \end{bmatrix} \begin{bmatrix} \Delta \theta_1 \\ \Delta \theta_2 \end{bmatrix}$$

Sanity check - this is the same as we obtained for the Jacobian by direct differentiation

Interactive Animation

Inverse kinematics using the Inverse Jacobian allows interactive position of kinematic structures

- used for character animation
- posing of character in key-frames

$$\Delta \vec{\phi} = J^{-1}(\vec{\phi}) \Delta x_{e}$$

Use an iterative solution

$$\vec{\phi}_{\text{man}} = \vec{\phi}_{\text{curr}} + \Delta \vec{\phi} = \vec{\phi}_{\text{curr}} + J^{-1} (\vec{\phi}_{\text{curr}}) \Delta x$$

This solution converges to an approximation of the required end effector position

- error depends on step-size

$$\varepsilon = \left\| J(\vec{\phi}) \Delta \theta - \Delta x_e \right\|$$

Solution requires a psuedo-inverse of the Jacobian

Problems: - Multiple Solution

- Singularities
- Ill contitioning

Problems in Inverse Kinematic Solution

(1) Multiple Solutions

The iterative solution relies on a local linear approximation of the forward kinematic function f and only converges to a local minima via 'gradient descent'

- the solution obtained is the nearest local minima
- arbitrary may violate physical constraints

(2) Singularities in the Inverse Jacobian

- Rank of matrix J is the number of independent columns of the matrix
- During iteration rank may change to <n ie 2 columns are linearly dependent
 This occurs when axis of the kinematic chain align 'gymbal-lock'
 the angles become linearly dependent
- both angle parameters produce changes in end-effector position in exactly the same direction

(3) Ill-conditioning

- In the region close to a singularity the solution may oscillate about the local minima
- add damping to error to limit rate of change in angles $\varepsilon = \left\| J(\vec{\phi}) \Delta \theta \Delta x_e \right\|^2 + \lambda \left\| \Delta \theta \right\|^2$

Summary

Hierarchical data structures

- tree traversal
- recursive function calls
- use matrix stack to combine matricies
- Object-Oriented design

Animation

- Forward Kinematics: position end-effector for given angles
- Inverse Kinematics: compute angles for given end-effector Iterative solution via inverse Jacobian

Jacobian computed geometrically for arbitrary chain 'moving axis formula'

Used for interactive character animation