
1 

Hierarchical Graphics and Animation 
 
 

Angel Ch.8, 
  Watt and Watt Ch.16 

Hierarchical Models 

Hierarchical models used to represent complex objects  
 - explicit dependency between sub-parts of an object 
 - object-oriented approach to implementation 
 - eg Articulated objects (robot arm) 

 
Scene hierarchical uses to represent all objects in as a hierachy 

 - shapes/lights/viewpoints/transforms/attributes 
 - ‘Scene Graph’ 

 
Scenes can be represented non-hierarchically  

 - leads to difficulties in scaling to large scale complex scenes 
 - all functions explicit in display() function 
 - inflexible 

 
Design of graphics systems with multiple objects 

 - hierarchical models 
 - object-oriented design 
 - scene graphs 
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Non-Hierarchical Modelling 

- Treat object independently  
- reference object by a unique symbol ie a,b,c…. 
 
Object initially defined in local object coordinates 
 
Transform each object instance from local to world coordinates:   

The image 
cannot be 
displayed. 
Your 
computer 

OpenGL display function: 
 display(){ 
        ….. 
        glMatrixMode(GL_MODELVIEW); 
        glLoadIdentity(); 
        glTranslatef(...); 
        glRotatef(…); 
        glScalef(…); 
        draw_object(); 
        ….. 
 }; 

- All objects are treated independently 
- display() function transforms/draws each object explicitly  
- No interrelations between objects 
 
Can represent objects by a table structure: 

 - each object has a symbol  
 - each object has corresponding translation/rotation/scale 
 - each object has set of attributes colour/material properties etc. 
 - render object by calling drawing each symbol in turn with  
   specified transformation/attributes 
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Hierarchical Models 
Consider a more complex model composed of several sub-objects 

 car = chassis + 4 wheels  

Representation 1: Treat all parts independently (non-hierarchical) 
 - apply transformation to each part independently  
       chassis: translate, draw chassis 
       wheel 1: rotate, translate, draw wheel 1 
       wheel 2: rotate, translate, draw wheel 2 
       …. 
  -  redundant, repeated computation of translate 
  - no explicit representation of dependence between chasis and wheels 

 
 
Representation 2: Group parts hierarchically     

 - exploit relation between parts  
 - exploit similarity  
    ie wheels are identical (just translated)  

Graph Representation 
 - nodes: objects + attributes? + transforms? 
 - edges: dependency between objects 
               parent-child relation between nodes 

 
‘Directed-Graph’ edges have a direction associated with them  
 
Tree - directed graph with no closed-loops 
            ie cannot return to the same point in the graph 
         - ‘root node’: no entering edges 
         - Intermediate nodes have one parent and one or more children 
         - ‘leaf node’: no children 
 
Parameters such as location & attributes may be stored either in nodes or edges 

Graph Structures 
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Example: Robot Arm 

Represented by a tree with a single chain 
 
Explicit hierarchical implementation 
(i) Base: Rotate about base  

  
(ii) Upper-arm: translate & rotate 

  
(iii) lower-arm: translate & rotate 

  
(iv) end-effector: translate & rotate 

  

Base  

upper-arm  

lower-arm  

end-effector  

OpenGL:     display(){ 
                          draw_base() 

           glRotatef(    ,0,0,1); 
           draw_upperarm(); 

                          glTranslatef(0,l1 ,0); 
           glRotatef(    ,0,0,1); 
           draw_lowerarm(); 
            ….. 

                       } 

θ1

θ2 θ3R(θ1)
M1 = R(θ1)

M2 = M1T (l2 )R(θ2 )

θ1

θ2

M3 = M2T (l2 )R(θ3)

M4 = M3T (l3)R(θ4 )

l1 

l2 l3 

This example demonstrates an explicit hierarchy  
 - hard-coded in display function 
 - hierarchy cannot be changed (inflexible) 

 
Object-oriented hierarchical tree data structure 

 Each node ‘object’ store 
 (1) Transformation of object M 
 (2) Pointer to function to draw object 
 (3) Pointers to children 

 
OpenGL psuedo code for single chain tree:  

 display(){ 
        draw_arm(root);                /* single call to recursive function */ 
 } 

 
 draw_arm(node){ 
          glTransform(node.M);    /* apply model transform */ 
          node.draw();                     /* draw this part */ 
          draw_arm(node.child);    /* recursive call to children */    
 }  
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Example: Skeleton 

Skeleton is a tree with multiple branches  

How do we traverse the tree to draw the figure? 
 - Any order ie depth-first, breadth-first 
  
 2 methods to implement traversal: 
     (1) Stack based - use matrix stack to store required matrices 
     (2) Recursive - store matrix within nodes of data structure  

Represent transformation matricies between each parent and child 
           - each matrix is the transformation of the object in local coordinates 
              into the parents coordinates 

(1) Stack-based tree traversal 
 - use matrix stack to store intermediate matrices 
 - current ModelView matrix M determines position of figure in scene 

 
 draw_figure(){ 
         glMatrixMode(GL_MODELVIEW); 
         glPushMatrix();          /* torso transform */ 
         draw_torso(); 
         glTranslatef(…);         /* transform of head relative to torso */ 
         glRotatef(...); 
         draw_head(); 
         glPopMatrix();           /* restore torso transform */ 
         glPushMatrix(); 
         glTranslate();             /* left_arm */ 
         glRotate(); 
         draw_upperarm(); 
         glTranslate();  
         glRotate(); 
         draw_lowerarm(); 
         glPopMatrix();            /* restore torso transform */ 
         glPushMatrix(); 
         glTranslate();             /* right arm */ 
         …... 
 } 
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Can also use Push/Pop values from attribute stack ie colour etc. 
 glPushAttrib(); 
 glPopAttrib(); 

 
Limitation of stack-based approach: 

 - explicit representation of tree in single function 
 - relies on application programmer to push/pop matrices 
 - hard-coded/inflexible  
    source code must be changed for different hierarchical structure 
 - no clear distinction between building a model and rendering it 

(2) Recursive tree data-structures  
 - each node is a recursive structure with pointers to children 
 - use a standard tree structure to represent hierarchy 
 - render via tree traversal algorithm (independent of model) 

 
C Implementation:                                                           C++ Implementation: 
        typedef struct treenode {                                                   class treenode{ 

 Glfloat m[16];                                                                   public:  
 void (*draw)();                                                                      void draw(); 
 int nchild;                                                                         private: 
 struct treenode *children;     Glfloat m[16]; 

       } treenode;                                                                                       int nchild; 
       treenode *children; 

       void draw_tree(treenode *node){                                        }; 
 glPushMatrix();  /* save transform*/ 
 glMultMatrixf(node->m);        void treenode::draw(){ 
 node->draw();                  glPushMatrix();   
 for (i=0;i<node->nchild;i++)                 …..    
      draw_tree(node->children[i]);                
 glPopMatrix();  /* restore transform */                glPopMatrix(); .. 

       }                                                                                           } 
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Graphical Objects and Hierarchies 

Represent all objects of a scene in a single hierarchy 
 - Shape (geometric objects points/lines/polygons…) 
 - Lights 
 - Viewer 
 - Material Properties (attributes)  

 
‘Object-Oriented’ approach 

 - each object is self-contained module 
 - Application programmer does NOT have to know internal representation 

               - Data encapsulation (no external use of pointers to member data)  
               - interface to access object via methods  

 - reuse code 

Tree-structure to represent complex objects 
 - reuse primitive object in multiple instances 
 - represent hierarchical relation (parent-child) between objects 
 - Use inheritance (C++) to derive complex objects from simple  
   primitives: Object B ‘is a’ instance of object A 
 - Examples: Car, skeleton 

Scene Graphs 

Represent all objects in a hierarchy:  
 - Shape/Lights/Cameras 

 
 
 
 
 
 
Scene graph represents explicitly the relationship between objects 

 - render by traversing the graph 
 - state attributes/matrices are restored for each branch in graph (Push/Pop) 

 
Object-Oriented Graphics API  

 - layer on top of OpenGL or other graphics API 
 - represent scene with a ‘scene-graph’ 
 - render the scene graph by tree traveral using OpenGL 
 - SGI Open Inventor/VRML/ DirectX/Java-3D 
 - OpenSceneGraph, OpenSG 
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Animation 

Articulated Model - Kinematic chain of Rigid Parts 
                 - Control by a small set of parameters (joint angles)  

 
Forward Kinematics 

 - give a set of joint angle parameters  

xe = f (

φ )

= M (θ1)M (θ2 )M (θ3)M (θ4 )x

Forward kinematic model propagates joint angles 
information to evaluate the transformation of the  
end-effector 

 - single solution for a given set of angles 
 - no dynamics (forces, mass, inertia) 

 
Widely used to control characters 

 - joint angles generated manually from key-frames 
   interpolation used to fill in intermediate frames 
 - captured from markers on a real-subject 

Avatartool 

θ1

θ3θ2

φ

Inverse Kinematics  
          Given a desired end-effector position xe  
          what combination of joint angles will produce this position 

)(1 exf −=φ


Used for interactive character positioning  
     ie moving end-effector changes arm joint angles 
 
Problem: Multiple solutions for a given end-effector position 

               - in general there is no unique inverse  
2-Link chain 
2 solutions 

3-Link Chain 
infinite solutions 
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Solution of Inverse Kinematics Problems for Animation 

xe = f (

φ )

xe − ndimensional vector position of end effector

φ −m dimensional vector of joint angles

Consider the forward kinematics equation: 

Jacobian matrix J is the matrix of partial derivatives relating an  
   infinitesimal change in each of the parameters to the change in 
   end-effector position 

Δxe = J(

φ )Δ

φ

Jij  is the partial derivative of end effector position xi with respect to angle  
 
The Jacobian is a local linear (first-order) approximation of the  
highly non-linear function f at a particular set of parameters 

f 
xi

θ j

ijJ=slope

Jij =
∂xi
∂θ j

= ∂fi (

φ )

∂θ j

J is an nxm matrix of partial derivatives 


φ

θ j

Solution of Inverse Kinematics using the Inverse Jacobian  

Jacobian provides a local linear approximation of the rate-of-change of  
 end-effector position x with respect to parameters  

 
Inverse Jacobian is a local approximation of the rate of change of parameters  
                              with respect to the end effector position x 
  
Use this to interactively move the end-effector position x towards the desired  
position: 

lengthstep

)(

−Δ

−Δ+=Δ+= currentgoalcurrentecurrentnew xxxxxx

The corresponding change in step length is given by: 

e

e

xJ

xf

Δ=Δ

=
−

−

)(

)(
1

1

φφ
φ





)(1 φ


−J is the inverse on an nxm matrix (not square) 
- requires psuedo-inverse  computation  

xJ currcurrcurrnew Δ+=Δ+= − )(1 φφφφφ


Approximation is only valid locally at    therefore must take small steps to solution 

startx

goalx


φ


φ


φ
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Example Constructing the Jacobian Matrix J for a 2-link Chain in 2D  

Forward kinematic equation: 

xe = f (θ1,θ2 ) =
x1
x2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

x1 = l1 cos(θ1)+ l2 cos(θ1 −θ2 )
x2 = l1 sin(θ1)+ l2 sin(θ1 −θ2 )

xe =
x1
x2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

l1 cos(θ1)+ l2 cos(θ1 −θ2 )
l1 sin(θ1)+ l2 sin(θ1 −θ2 )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1x

2x

1θ

2θ
1l 2l

xe = f (

φ )

For a 2-link chain in 2 dimensions: 

Example Constructing the Jacobian Matrix J for a 2-link Chain in 2D  

xe =
x1
x2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

l1 cos(θ1)+ l2 cos(θ1 −θ2 )
l1 sin(θ1)+ l2 sin(θ1 −θ2 )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1x

2x

1θ

2θ
1l 2l

Δxe = J(

φ )Δ

φ

Δxe =
Δx1
Δx2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,Δ

φ =

Δθ1
Δθ2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Jacobian J relating a change in joint angle to a change in end effector position: 

Jij =
∂xi
∂θ j

J11 =
∂x1
dθ1

= −l1 sin(θ1)− l2 sin(θ1 −θ2 )

J12 =
∂x1
dθ2

= l2 sin(θ1 −θ2 )

J21 =
∂x2
dθ1

= l1 cos(θ1)+ l2 cos(θ1 −θ2 )

J22 =
∂x2
dθ2

= −l2 cos(θ1 −θ2 )

Partial derivative: 
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Example Constructing the Jacobian Matrix J for a 2-link Chain in 2D  

xe =
x1
x2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

l1 cos(θ1)+ l2 cos(θ1 −θ2 )
l1 sin(θ1)+ l2 sin(θ1 −θ2 )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1x

2x

1θ

2θ
1l 2l

Δxe = J(

φ )Δ

φ

Δxe =
Δxe1
Δxe2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,Δ

φ =

Δθ1
Δθ2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Jacobian J relating a change in joint angle to a change in end effector position: 

J =
J11 J12
J21 J22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

−l1 sinθ1 − l2 sin(θ1 −θ2 ) l2 sin(θ1 −θ2 )
l1 cosθ1 + l2 cos(θ1 −θ2 ) −l2 cos(θ1 −θ2 )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Δxe =
Δx1
Δx2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

−l1 sinθ1 − l2 sin(θ1 −θ2 ) l2 sin(θ1 −θ2 )
l1 cosθ1 + l2 cos(θ1 −θ2 ) −l2 cos(θ1 −θ2 )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Δθ1
Δθ2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Geometric Evaluation of Partial Derivatives 

Constructing Jacobians algebraically is tedious for complex kinematic chains  
and trees  - more direct geometric approach 

Consider a general kinematic chain where each  
link has a rotation    about a unit length axis wj 

θ j
wj angle-axis representation of an  

arbitrary rotation Rj 

ex

11w
θ

44w
θ

33w
θ

22w
θ

What is the partial derivative:  
xe = f (


ϕ )

Jij =
∂xi
∂θ j

rate-of-change of ith end-effector position coordinate  
with respect to change in jth joint parameter   
 

∂xi
∂θ j θ j

θ j
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Geometric computation of the Jacobian 

Rate-of-change end-effector position wrt parameter  
    - depends only on section of chain from joint i to the end-effector 
 

θi
wi

ex

xi

θi

   - rigid wrt      (all other degrees of freedom are constant) 
 
    Equivalent to having a single rigid link 
    from the ith joint to the end-effector: ex

xi

iel
θi
wi

θi

Example: 2D Rotation in the plane 

Consider the single link in a plane orthogonal to the rotation axis:  

iθ

ex

ix

iel

0. =ielw


)cos,sin(

.r.t constant w is:Note
)sin,(cos

iiie
i

e

iie

iiiee

lx
l

lx

θθ
θ

θ
θθ

−=
∂
∂

=

Can compute partial derivative for rate-of-change in end effector position  
wrt the ith joint without considering intermediate joints which are rigid (constant) 
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Geometric computation of Jacobian for general 3D rotation  

A general 3D rotation axis w is not orthogonal to the link axis  

iiw
θ

ex

ix

iel

Vector lie can be split into two components: 

iieiieparaieorth

i

iieipara

i

wlwlvlv
w

wlwv
w

)(
  toorthogonalcomponent 

)(
   toparallelcomponent 

⋅−=−=

⋅=
orthv

parav
iel

iw

rotorthparaorthparaie

ipara

orthiirotorth

iiorth

vvRvRvRl

wv

vwRv
wv

_

_

:Therefore

about rotation by  changednot  is :Note

),(
degrees by  about  rotated is 

+=+=

= θ
θ

ieii

orthi

lwwu
vwu

×=×=  v 
: and   toorthogonal  vector heconsider t Now

orth 

u

iw

orthv

iel

)sin()cos(),(
   toorthogonal plane in the  ofRotation 

iiorthorthii

iorth

uvvwR
iswv

θθθ +=

 orthv

u

iθ
 orthRv
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iieiiieiiiie

iieiiiieiieiiei

iiorthpara

rotorthparaieii

ie

lwwlwl
lwwlwlwlw

uvv
vvlwR

l

θθθ
θθ

θθ
θ

sin)())(cos1(cos
sin)(cos))(()(

sincos

),(
: line ofRotation 

_

×+⋅−+=
×+⋅−+⋅=

++=

+=

This is the general expression for the rotation of a vector lie about an arbitrary 
3D axis wi through angle  

Use this expression to compute the partial derivative of the end-effector  
postion with respect to the rotation of a specific joint 
 
 
Note: This expression allows the Jacobian matrix to be computed directly from 
           geometric operations on vectors. 

iθ

Geometric computation of Jacobian for a kinematic chain 

)(
)(),(

:ionapproximat  thegives This
sin1cos0 asion approximat  themakecan   we smallFor 

rt position weffector -endin  change of rate  thederiveCan 

sin)())(cos1(cos),(

: axisan about rotation  3D for the expression Given the

ieie

ieiiieieii

iiiii

i

iieiiieiiiieieii

xxl
lwllwR

lwwlwllwR
w

−=
×+≈

⎯→⎯⎯→⎯⎯→⎯

×+⋅−+=

θθ

θθθθθ

θ

θθθθ

i

_

JJacobian  in thecolumn  a eapproximat  toused becan  -    
positioneffector -end in the change      

 ingcorrespond a  toangle in the change lincrementaan  relates -    
formula' axis moving'  theasknown  is This

)(
 changes lincrementaFor 

ieiie

ieiiierotie

iii

lx
lwll

w

×Δ=Δ

×+=
=Δ

θ
θ

θθ



15 

jointeach rt effector w-endin  change of rate  theof sum  the toequivalent is This

effector end  the tocentrejoint 
  thefrom vector  with the change of rateangular 
  theofproduct -cross  theof frames teintermedia all

over  sum  theiseffector -end  theofposition  of change of rate

effector end on the joints all ofeffect  heconsider t Now

00

i

n

i
iei

n

i
eiie lxx

θ

θ

Δ

×Δ=Δ=Δ ∑∑
==

Geometric computation of Jacobian for a kinematic chain 

Example: of simple 2-link chain in 2D 
 (see previous Example of analytic computation)  

1x

2x

1θ

2θ
1l 2l

)0),cos(),sin((
))0),cos()cos(),sin()sin(((

)1,0,0()1,0,0(

)1,0,0(
)1,0,0(

)1,0,0(
)0),sin(),cos((

)0),sin()sin(),cos()cos((

2122122

21211212111

2211

2211

22

11

2122122

21211212111

θθθθθ
θθθθθθθ

θθ
θθ

θθ
θθ

θθθθ
θθθθθθ

−−−+
−+−−−=

×+×=
×Δ+×Δ=Δ

=Δ
=Δ

=
−−=

−+−+=

lld
lllld

ldld
llx

d
d

w
lll

lllll

ee

eee

i

e

e

ationdifferentidirect                        
by Jacobian  for the obtained  weas same  theis  this-check Sanity 

)cos()cos(cos
)sin()sin(sin

2

1

21221211

21221211

2

1
⎥
⎦

⎤
⎢
⎣

⎡
Δ
Δ

⎥
⎦

⎤
⎢
⎣

⎡
−−−+
−−−−

=⎥
⎦

⎤
⎢
⎣

⎡
Δ
Δ

=Δ
θ
θ

θθθθθ
θθθθθ

lll
lll

x
x

xe
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Interactive Animation 

Inverse kinematics using the Inverse Jacobian allows interactive position of 
kinematic structures  

 - used for character animation 
 - posing of character in key-frames 

exJ Δ=Δ − )(1 φφ


xJ currcurrcurrnew Δ+=Δ+= − )(1 φφφφφ


Use an iterative solution  

This solution converges to an approximation of the required end effector position 
 - error depends on step-size 

Solution requires a psuedo-inverse of the Jacobian 
 
Problems: - Multiple Solution 

    - Singularities  
    - Ill contitioning 

exJ Δ−Δ= θφε )(


Problems in Inverse Kinematic Solution 

(1) Multiple Solutions 
 The iterative solution relies on a local linear approximation of  
 the forward kinematic function f and only converges to a local minima 
 via ‘gradient descent’ 
 - the solution obtained is the nearest local minima 
 - arbitrary may violate physical constraints 

(2) Singularities in the Inverse Jacobian 
 - Rank of matrix J is the number of independent columns of the matrix 
 - During iteration rank may change to <n ie 2 columns are linearly dependent 
   This occurs when axis of the kinematic chain align ‘gymbal-lock’ 
    the angles become linearly dependent 
 - both angle parameters produce changes in 

                 end-effector position in exactly the same direction  
1xΔ
2xΔ

2 θ

1 θ(3) Ill-conditoning 
 - In the region close to a singularity the solution 
   may oscillate about the local minima 
 - add damping to error 
   to limit rate of change in angles 

22
)( θλθφε Δ+Δ−Δ= exJ

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Summary 

Hierarchical data structures 
 - tree traversal 
 - recursive function calls 
 - use matrix stack to combine matricies 
 - Object-Oriented design 

 
Animation 

 - Forward Kinematics: position end-effector for given angles 
 - Inverse Kinematics: compute angles for given end-effector 
  Iterative solution via inverse Jacobian 
                Jacobian computed geometrically for arbitrary chain   
       ‘moving axis formula’ 
  Used for interactive character animation 


