
1

Hierarchical Graphics and Animation

Angel Ch.8,
 Watt and Watt Ch.16

Hierarchical Models

Hierarchical models used to represent complex objects
 - explicit dependency between sub-parts of an object
 - object-oriented approach to implementation
 - eg Articulated objects (robot arm)

Scene hierarchical uses to represent all objects in as a hierachy

 - shapes/lights/viewpoints/transforms/attributes
 - ‘Scene Graph’

Scenes can be represented non-hierarchically

 - leads to difficulties in scaling to large scale complex scenes
 - all functions explicit in display() function
 - inflexible

Design of graphics systems with multiple objects

 - hierarchical models
 - object-oriented design
 - scene graphs

2

Non-Hierarchical Modelling

- Treat object independently
- reference object by a unique symbol ie a,b,c….

Object initially defined in local object coordinates

Transform each object instance from local to world coordinates:

The image
cannot be
displayed.
Your
computer

OpenGL display function:
 display(){
 …..
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glTranslatef(...);
 glRotatef(…);
 glScalef(…);
 draw_object();
 …..
 };

- All objects are treated independently
- display() function transforms/draws each object explicitly
- No interrelations between objects

Can represent objects by a table structure:

 - each object has a symbol
 - each object has corresponding translation/rotation/scale
 - each object has set of attributes colour/material properties etc.
 - render object by calling drawing each symbol in turn with
 specified transformation/attributes

3

Hierarchical Models
Consider a more complex model composed of several sub-objects

 car = chassis + 4 wheels

Representation 1: Treat all parts independently (non-hierarchical)
 - apply transformation to each part independently
 chassis: translate, draw chassis
 wheel 1: rotate, translate, draw wheel 1
 wheel 2: rotate, translate, draw wheel 2
 ….
 - redundant, repeated computation of translate
 - no explicit representation of dependence between chasis and wheels

Representation 2: Group parts hierarchically

 - exploit relation between parts
 - exploit similarity
 ie wheels are identical (just translated)

Graph Representation
 - nodes: objects + attributes? + transforms?
 - edges: dependency between objects
 parent-child relation between nodes

‘Directed-Graph’ edges have a direction associated with them

Tree - directed graph with no closed-loops
 ie cannot return to the same point in the graph
 - ‘root node’: no entering edges
 - Intermediate nodes have one parent and one or more children
 - ‘leaf node’: no children

Parameters such as location & attributes may be stored either in nodes or edges

Graph Structures

4

Example: Robot Arm

Represented by a tree with a single chain

Explicit hierarchical implementation
(i) Base: Rotate about base

(ii) Upper-arm: translate & rotate

(iii) lower-arm: translate & rotate

(iv) end-effector: translate & rotate

Base

upper-arm

lower-arm

end-effector

OpenGL: display(){
 draw_base()

 glRotatef(,0,0,1);
 draw_upperarm();

 glTranslatef(0,l1 ,0);
 glRotatef(,0,0,1);
 draw_lowerarm();
 …..

 }

θ1

θ2 θ3R(θ1)
M1 = R(θ1)

M2 = M1T (l2)R(θ2)

θ1

θ2

M3 = M2T (l2)R(θ3)

M4 = M3T (l3)R(θ4)

l1

l2 l3

This example demonstrates an explicit hierarchy
 - hard-coded in display function
 - hierarchy cannot be changed (inflexible)

Object-oriented hierarchical tree data structure

 Each node ‘object’ store
 (1) Transformation of object M
 (2) Pointer to function to draw object
 (3) Pointers to children

OpenGL psuedo code for single chain tree:

 display(){
 draw_arm(root); /* single call to recursive function */
 }

 draw_arm(node){
 glTransform(node.M); /* apply model transform */
 node.draw(); /* draw this part */
 draw_arm(node.child); /* recursive call to children */
 }

5

Example: Skeleton

Skeleton is a tree with multiple branches

How do we traverse the tree to draw the figure?
 - Any order ie depth-first, breadth-first

 2 methods to implement traversal:
 (1) Stack based - use matrix stack to store required matrices
 (2) Recursive - store matrix within nodes of data structure

Represent transformation matricies between each parent and child
 - each matrix is the transformation of the object in local coordinates
 into the parents coordinates

(1) Stack-based tree traversal
 - use matrix stack to store intermediate matrices
 - current ModelView matrix M determines position of figure in scene

 draw_figure(){
 glMatrixMode(GL_MODELVIEW);
 glPushMatrix(); /* torso transform */
 draw_torso();
 glTranslatef(…); /* transform of head relative to torso */
 glRotatef(...);
 draw_head();
 glPopMatrix(); /* restore torso transform */
 glPushMatrix();
 glTranslate(); /* left_arm */
 glRotate();
 draw_upperarm();
 glTranslate();
 glRotate();
 draw_lowerarm();
 glPopMatrix(); /* restore torso transform */
 glPushMatrix();
 glTranslate(); /* right arm */
 …...
 }

6

Can also use Push/Pop values from attribute stack ie colour etc.
 glPushAttrib();
 glPopAttrib();

Limitation of stack-based approach:

 - explicit representation of tree in single function
 - relies on application programmer to push/pop matrices
 - hard-coded/inflexible
 source code must be changed for different hierarchical structure
 - no clear distinction between building a model and rendering it

(2) Recursive tree data-structures
 - each node is a recursive structure with pointers to children
 - use a standard tree structure to represent hierarchy
 - render via tree traversal algorithm (independent of model)

C Implementation: C++ Implementation:
 typedef struct treenode { class treenode{

 Glfloat m[16]; public:
 void (*draw)(); void draw();
 int nchild; private:
 struct treenode *children; Glfloat m[16];

 } treenode; int nchild;
 treenode *children;

 void draw_tree(treenode *node){ };
 glPushMatrix(); /* save transform*/
 glMultMatrixf(node->m); void treenode::draw(){
 node->draw(); glPushMatrix();
 for (i=0;i<node->nchild;i++) …..
 draw_tree(node->children[i]);
 glPopMatrix(); /* restore transform */ glPopMatrix(); ..

 } }

7

Graphical Objects and Hierarchies

Represent all objects of a scene in a single hierarchy
 - Shape (geometric objects points/lines/polygons…)
 - Lights
 - Viewer
 - Material Properties (attributes)

‘Object-Oriented’ approach

 - each object is self-contained module
 - Application programmer does NOT have to know internal representation

 - Data encapsulation (no external use of pointers to member data)
 - interface to access object via methods

 - reuse code

Tree-structure to represent complex objects
 - reuse primitive object in multiple instances
 - represent hierarchical relation (parent-child) between objects
 - Use inheritance (C++) to derive complex objects from simple
 primitives: Object B ‘is a’ instance of object A
 - Examples: Car, skeleton

Scene Graphs

Represent all objects in a hierarchy:
 - Shape/Lights/Cameras

Scene graph represents explicitly the relationship between objects

 - render by traversing the graph
 - state attributes/matrices are restored for each branch in graph (Push/Pop)

Object-Oriented Graphics API

 - layer on top of OpenGL or other graphics API
 - represent scene with a ‘scene-graph’
 - render the scene graph by tree traveral using OpenGL
 - SGI Open Inventor/VRML/ DirectX/Java-3D
 - OpenSceneGraph, OpenSG

8

Animation

Articulated Model - Kinematic chain of Rigid Parts
 - Control by a small set of parameters (joint angles)

Forward Kinematics

 - give a set of joint angle parameters

xe = f (

φ)

= M (θ1)M (θ2)M (θ3)M (θ4)x

Forward kinematic model propagates joint angles
information to evaluate the transformation of the
end-effector

 - single solution for a given set of angles
 - no dynamics (forces, mass, inertia)

Widely used to control characters

 - joint angles generated manually from key-frames
 interpolation used to fill in intermediate frames
 - captured from markers on a real-subject

Avatartool

θ1

θ3θ2

φ

Inverse Kinematics
 Given a desired end-effector position xe
 what combination of joint angles will produce this position

)(1 exf −=φ


Used for interactive character positioning
 ie moving end-effector changes arm joint angles

Problem: Multiple solutions for a given end-effector position

 - in general there is no unique inverse
2-Link chain
2 solutions

3-Link Chain
infinite solutions

9

Solution of Inverse Kinematics Problems for Animation

xe = f (

φ)

xe − ndimensional vector position of end effector

φ −m dimensional vector of joint angles

Consider the forward kinematics equation:

Jacobian matrix J is the matrix of partial derivatives relating an
 infinitesimal change in each of the parameters to the change in
 end-effector position

Δxe = J(

φ)Δ

φ

Jij is the partial derivative of end effector position xi with respect to angle

The Jacobian is a local linear (first-order) approximation of the
highly non-linear function f at a particular set of parameters

f
xi

θ j

ijJ=slope

Jij =
∂xi
∂θ j

= ∂fi (

φ)

∂θ j

J is an nxm matrix of partial derivatives


φ

θ j

Solution of Inverse Kinematics using the Inverse Jacobian

Jacobian provides a local linear approximation of the rate-of-change of
 end-effector position x with respect to parameters

Inverse Jacobian is a local approximation of the rate of change of parameters
 with respect to the end effector position x

Use this to interactively move the end-effector position x towards the desired
position:

lengthstep

)(

−Δ

−Δ+=Δ+= currentgoalcurrentecurrentnew xxxxxx

The corresponding change in step length is given by:

e

e

xJ

xf

Δ=Δ

=
−

−

)(

)(
1

1

φφ
φ





)(1 φ


−J is the inverse on an nxm matrix (not square)
- requires psuedo-inverse computation

xJ currcurrcurrnew Δ+=Δ+= −)(1 φφφφφ


Approximation is only valid locally at therefore must take small steps to solution

startx

goalx


φ


φ


φ

10

Example Constructing the Jacobian Matrix J for a 2-link Chain in 2D

Forward kinematic equation:

xe = f (θ1,θ2) =
x1
x2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

x1 = l1 cos(θ1)+ l2 cos(θ1 −θ2)
x2 = l1 sin(θ1)+ l2 sin(θ1 −θ2)

xe =
x1
x2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

l1 cos(θ1)+ l2 cos(θ1 −θ2)
l1 sin(θ1)+ l2 sin(θ1 −θ2)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1x

2x

1θ

2θ
1l 2l

xe = f (

φ)

For a 2-link chain in 2 dimensions:

Example Constructing the Jacobian Matrix J for a 2-link Chain in 2D

xe =
x1
x2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

l1 cos(θ1)+ l2 cos(θ1 −θ2)
l1 sin(θ1)+ l2 sin(θ1 −θ2)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1x

2x

1θ

2θ
1l 2l

Δxe = J(

φ)Δ

φ

Δxe =
Δx1
Δx2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,Δ

φ =

Δθ1
Δθ2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Jacobian J relating a change in joint angle to a change in end effector position:

Jij =
∂xi
∂θ j

J11 =
∂x1
dθ1

= −l1 sin(θ1)− l2 sin(θ1 −θ2)

J12 =
∂x1
dθ2

= l2 sin(θ1 −θ2)

J21 =
∂x2
dθ1

= l1 cos(θ1)+ l2 cos(θ1 −θ2)

J22 =
∂x2
dθ2

= −l2 cos(θ1 −θ2)

Partial derivative:

11

Example Constructing the Jacobian Matrix J for a 2-link Chain in 2D

xe =
x1
x2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

l1 cos(θ1)+ l2 cos(θ1 −θ2)
l1 sin(θ1)+ l2 sin(θ1 −θ2)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1x

2x

1θ

2θ
1l 2l

Δxe = J(

φ)Δ

φ

Δxe =
Δxe1
Δxe2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,Δ

φ =

Δθ1
Δθ2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Jacobian J relating a change in joint angle to a change in end effector position:

J =
J11 J12
J21 J22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

−l1 sinθ1 − l2 sin(θ1 −θ2) l2 sin(θ1 −θ2)
l1 cosθ1 + l2 cos(θ1 −θ2) −l2 cos(θ1 −θ2)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Δxe =
Δx1
Δx2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

−l1 sinθ1 − l2 sin(θ1 −θ2) l2 sin(θ1 −θ2)
l1 cosθ1 + l2 cos(θ1 −θ2) −l2 cos(θ1 −θ2)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Δθ1
Δθ2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Geometric Evaluation of Partial Derivatives

Constructing Jacobians algebraically is tedious for complex kinematic chains
and trees - more direct geometric approach

Consider a general kinematic chain where each
link has a rotation about a unit length axis wj

θ j
wj angle-axis representation of an

arbitrary rotation Rj

ex

11w
θ

44w
θ

33w
θ

22w
θ

What is the partial derivative:
xe = f (


ϕ)

Jij =
∂xi
∂θ j

rate-of-change of ith end-effector position coordinate
with respect to change in jth joint parameter

∂xi
∂θ j θ j

θ j

12

Geometric computation of the Jacobian

Rate-of-change end-effector position wrt parameter
 - depends only on section of chain from joint i to the end-effector

θi
wi

ex

xi

θi

 - rigid wrt (all other degrees of freedom are constant)

 Equivalent to having a single rigid link
 from the ith joint to the end-effector: ex

xi

iel
θi
wi

θi

Example: 2D Rotation in the plane

Consider the single link in a plane orthogonal to the rotation axis:

iθ

ex

ix

iel

0. =ielw


)cos,sin(

.r.t constant w is:Note
)sin,(cos

iiie
i

e

iie

iiiee

lx
l

lx

θθ
θ

θ
θθ

−=
∂
∂

=

Can compute partial derivative for rate-of-change in end effector position
wrt the ith joint without considering intermediate joints which are rigid (constant)

13

Geometric computation of Jacobian for general 3D rotation

A general 3D rotation axis w is not orthogonal to the link axis

iiw
θ

ex

ix

iel

Vector lie can be split into two components:

iieiieparaieorth

i

iieipara

i

wlwlvlv
w

wlwv
w

)(
 toorthogonalcomponent

)(
 toparallelcomponent

⋅−=−=

⋅=
orthv

parav
iel

iw

rotorthparaorthparaie

ipara

orthiirotorth

iiorth

vvRvRvRl

wv

vwRv
wv

_

_

:Therefore

about rotation by changednot is :Note

),(
degrees by about rotated is

+=+=

= θ
θ

ieii

orthi

lwwu
vwu

×=×= v
: and toorthogonal vector heconsider t Now

orth

u

iw

orthv

iel

)sin()cos(),(
 toorthogonal plane in the ofRotation

iiorthorthii

iorth

uvvwR
iswv

θθθ +=

 orthv

u

iθ
 orthRv

14

iieiiieiiiie

iieiiiieiieiiei

iiorthpara

rotorthparaieii

ie

lwwlwl
lwwlwlwlw

uvv
vvlwR

l

θθθ
θθ

θθ
θ

sin)())(cos1(cos
sin)(cos))(()(

sincos

),(
: line ofRotation

_

×+⋅−+=
×+⋅−+⋅=

++=

+=

This is the general expression for the rotation of a vector lie about an arbitrary
3D axis wi through angle

Use this expression to compute the partial derivative of the end-effector
postion with respect to the rotation of a specific joint

Note: This expression allows the Jacobian matrix to be computed directly from
 geometric operations on vectors.

iθ

Geometric computation of Jacobian for a kinematic chain

)(
)(),(

:ionapproximat thegives This
sin1cos0 asion approximat themakecan we smallFor

rt position weffector -endin change of rate thederiveCan

sin)())(cos1(cos),(

: axisan about rotation 3D for the expression Given the

ieie

ieiiieieii

iiiii

i

iieiiieiiiieieii

xxl
lwllwR

lwwlwllwR
w

−=
×+≈

⎯→⎯⎯→⎯⎯→⎯

×+⋅−+=

θθ

θθθθθ

θ

θθθθ

i

_

JJacobian in thecolumn a eapproximat toused becan -
positioneffector -end in the change

 ingcorrespond a toangle in the change lincrementaan relates -
formula' axis moving' theasknown is This

)(
 changes lincrementaFor

ieiie

ieiiierotie

iii

lx
lwll

w

×Δ=Δ

×+=
=Δ

θ
θ

θθ

15

jointeach rt effector w-endin change of rate theof sum the toequivalent is This

effector end the tocentrejoint
 thefrom vector with the change of rateangular
 theofproduct -cross theof frames teintermedia all

over sum theiseffector -end theofposition of change of rate

effector end on the joints all ofeffect heconsider t Now

00

i

n

i
iei

n

i
eiie lxx

θ

θ

Δ

×Δ=Δ=Δ ∑∑
==

Geometric computation of Jacobian for a kinematic chain

Example: of simple 2-link chain in 2D
 (see previous Example of analytic computation)

1x

2x

1θ

2θ
1l 2l

)0),cos(),sin((
))0),cos()cos(),sin()sin(((

)1,0,0()1,0,0(

)1,0,0(
)1,0,0(

)1,0,0(
)0),sin(),cos((

)0),sin()sin(),cos()cos((

2122122

21211212111

2211

2211

22

11

2122122

21211212111

θθθθθ
θθθθθθθ

θθ
θθ

θθ
θθ

θθθθ
θθθθθθ

−−−+
−+−−−=

×+×=
×Δ+×Δ=Δ

=Δ
=Δ

=
−−=

−+−+=

lld
lllld

ldld
llx

d
d

w
lll

lllll

ee

eee

i

e

e

ationdifferentidirect
by Jacobian for the obtained weas same theis this-check Sanity

)cos()cos(cos
)sin()sin(sin

2

1

21221211

21221211

2

1
⎥
⎦

⎤
⎢
⎣

⎡
Δ
Δ

⎥
⎦

⎤
⎢
⎣

⎡
−−−+
−−−−

=⎥
⎦

⎤
⎢
⎣

⎡
Δ
Δ

=Δ
θ
θ

θθθθθ
θθθθθ

lll
lll

x
x

xe

16

Interactive Animation

Inverse kinematics using the Inverse Jacobian allows interactive position of
kinematic structures

 - used for character animation
 - posing of character in key-frames

exJ Δ=Δ −)(1 φφ


xJ currcurrcurrnew Δ+=Δ+= −)(1 φφφφφ


Use an iterative solution

This solution converges to an approximation of the required end effector position
 - error depends on step-size

Solution requires a psuedo-inverse of the Jacobian

Problems: - Multiple Solution

 - Singularities
 - Ill contitioning

exJ Δ−Δ= θφε)(


Problems in Inverse Kinematic Solution

(1) Multiple Solutions
 The iterative solution relies on a local linear approximation of
 the forward kinematic function f and only converges to a local minima
 via ‘gradient descent’
 - the solution obtained is the nearest local minima
 - arbitrary may violate physical constraints

(2) Singularities in the Inverse Jacobian
 - Rank of matrix J is the number of independent columns of the matrix
 - During iteration rank may change to <n ie 2 columns are linearly dependent
 This occurs when axis of the kinematic chain align ‘gymbal-lock’
 the angles become linearly dependent
 - both angle parameters produce changes in

 end-effector position in exactly the same direction
1xΔ
2xΔ

2 θ

1 θ(3) Ill-conditoning
 - In the region close to a singularity the solution
 may oscillate about the local minima
 - add damping to error
 to limit rate of change in angles

22
)(θλθφε Δ+Δ−Δ= exJ


17

Summary

Hierarchical data structures
 - tree traversal
 - recursive function calls
 - use matrix stack to combine matricies
 - Object-Oriented design

Animation

 - Forward Kinematics: position end-effector for given angles
 - Inverse Kinematics: compute angles for given end-effector
 Iterative solution via inverse Jacobian
 Jacobian computed geometrically for arbitrary chain
 ‘moving axis formula’
 Used for interactive character animation

