Hierarchical Graphics and Animation

Angel Ch.8,
Watt and Watt Ch.16

Hierarchical Models

Hierarchical models used to represent complex objects
- explicit dependency between sub-parts of an object
- object-oriented approach to implementation
- eg Articulated objects (robot arm)

Scene hierarchical uses to represent all objects in as a hierachy
- shapes/lights/viewpoints/transforms/attributes
- ‘Scene Graph’

Scenes can be represented non-hierarchically
- leads to difficulties in scaling to large scale complex scenes
- all functions explicit in display() function
- inflexible

Design of graphics systems with multiple objects
- hierarchical models
- object-oriented design
- scene graphs

Non-Hierarchical Modelling

- Treat object independently
- reference object by a unique symbol ic a,b,c....

Object initially defined in local object coordinates

Transform each object instance from local to world coordinates:

T e
x g
computer

OpenGL display function: ,
display(){

giMatrixMode(GL_MODELVIEW);
glLoadldentity();
glTranslatef{(...);
glRotatef{...);
glScalef(...);
draw_object();

- All objects are treated independently
- display() function transforms/draws each object explicitly
- No interrelations between objects

Can represent objects by a table structure:
- each object has a symbol
- each object has corresponding translation/rotation/scale
- each object has set of attributes colour/material properties etc.
- render object by calling drawing each symbol in turn with
specified transformation/attributes

Symbol Scale Rotate Translate

S ,8.,8, U, Y, U dx,dy,dz

22 8yr 8, b s

B

Hierarchical Models

Consider a more complex model composed of several sub-objects
car = chassis + 4 wheels

Representation 1: Treat all parts independently (non-hierarchical)
- apply transformation to each part independently
chassis. translate, draw chassis
wheel 1: rotate, translate, draw wheel 1
wheel 2: rotate, translate, draw wheel 2

- redundant, repeated computation of translate
- no explicit representation of dependence between chasis and wheels

Chassis
Representation 2: Group parts hierarchically

- exploit relation between parts
- exploit similarity Right-frontI Left-front
ie wheels are identical (just translated) vheel

Rightrear| Left-rear
wheel wheel

wheel

Graph Structures

Chassis

Graph Representation
- nodes: objects + attributes? + transforms? g et
- edges: dependency between objects]
parent-child relation between nodes

wheel wheel ‘wheel

Right—rear‘ Left-rear I

‘Directed-Graph’ edges have a direction associated with them

Tree - directed graph with no closed-loops
ie cannot return to the same point in the graph
- ‘root node’ : no entering edges
- Intermediate nodes have one parent and one or more children
- ‘leaf node’ : no children

Parameters such as location & attributes may be stored either in nodes or edges

Example: Robot Arm

Represented by a tree with a single chain

Explicit hierarchical implementation 0. o 0
(i) Base: Rotate about base R(6,) D 3 upper-arm
M, =R(6,) ’
! ! 0./,

(i1) Upper-arm: translate & rotate
M,=MT(,)R(,)

(iii) lower-arm: translate & rotate
M, =M,T(,)R(6,) end-effector

(iv) end-effector: translate & rotate
M,=MT(,)R(,)

lower-arm

OpenGL: display(){
draw_base()
glRotatef(6,,0,0,1);
draw_upperarm();
glTranslatef(0,1,,0);
glRotatef(0,,0,0,1);
draw_lowerarm();

This example demonstrates an explicit hierarchy
- hard-coded in display function
- hierarchy cannot be changed (inflexible)

Object-oriented hierarchical tree data structure
Each node ‘object’ store
(1) Transformation of object M
(2) Pointer to function to draw object
(3) Pointers to children

OpenGL psuedo code for single chain tree:

display(){
draw_arm(root); /* single call to recursive function */
/

draw_arm(node){
glTransform(node.M); /* apply model transform */
node.draw(); /* draw this part */
draw_arm(node.child); /* recursive call to children */

Example: Skeleton

Skeleton is a tree with multiple branches

[1 oo

Mh MIlux Mnm MIul Mml
Left-upper| Right-upped Left-upper| Right-uppe:
Head
arm arm leg I

eg
+ My, + M, + My + M,
Left-lower| Rightdower] Leftlower| Right-lows
am arm leg leg

Represent transformation matricies between each parent and child
- each matrix is the transformation of the object in local coordinates
into the parents coordinates

How do we traverse the tree to draw the figure?
- Any order ie depth-first, breadth-first

2 methods to implement traversal:
(1) Stack based - use matrix stack to store required matrices
(2) Recursive - store matrix within nodes of data structure

(1) Stack-based tree traversal
- use matrix stack to store intermediate matrices
- current ModelView matrix M determines position of figure in scene

draw_figure(){
giMatrixMode(GL_MODELVIEW),
glPushMatrix(); /* torso transform */
draw_torso();
glTranslatef(...); /* transform of head relative to torso */

glRotatef(...);
draw_head();

glPopMatrix(); /* restore torso transform */
glPushMatrix();

glTranslate(); /* left_arm */

glRotate();

draw_upperarm();

glTranslate();

glRotate();

draw_lowerarm();

glPopMatrix(); /* restore torso transform */
glPushMatrix();

glTranslate(); /* right arm */

Can also use Push/Pop values from attribute stack ie colour etc.
glPushAttrib();
glPopAttrib();

Limitation of stack-based approach:
- explicit representation of tree in single function
- relies on application programmer to push/pop matrices
- hard-coded/inflexible
source code must be changed for different hierarchical structure
- no clear distinction between building a model and rendering it

(2) Recursive tree data-structures
- each node is a recursive structure with pointers to children
- use a standard tree structure to represent hierarchy
- render via tree traversal algorithm (independent of model)

C Implementation: C++ Implementation:
typedef struct treenode { class treenode{

Glfloat m[16]; public:

void (*draw)(); void draw();

int nchild; private:

struct treenode *children; Glfloat m[16];
} treenode; int nchild;

treenode *children;

void draw_tree(treenode *node){ s

glPushMatrix(); /* save transform™/

glMultMatrixf(node->m); void treenode: :draw(){

node->draw(); glPushMatrix();

for (i=0;i<node->nchild;i++)
draw_tree(node->children[i]);
glPopMatrix(); /* restore transform */ glPopMatrix(); ..

Graphical Objects and Hierarchies

Represent all objects of a scene in a single hierarchy
- Shape (geometric objects points/lines/polygons...)
- Lights
- Viewer] essese Obdest
- Material Properties (attributes) R

methods

‘Object-Oriented’ approach
- each object is self-contained module
- Application programmer does NOT have to know internal representation
- Data encapsulation (no external use of pointers to member data)
- interface to access object via methods
- reuse code

Tree-structure to represent complex objects
- reuse primitive object in multiple instances
- represent hierarchical relation (parent-child) between objects
- Use inheritance (C++) to derive complex objects from simple
primitives: Object B ‘isa’ instance of object A
- Examples: Car, skeleton

Scene Graphs
Represent all objects in a hierarchy: .
- Shape/Lights/Cameras —,—I
r H 1 l—l—|
Color Translat Cbject Ll Translat: Object 3
1 | 1
Rotate | Tratslat% Rotate |

Cbject 2|

Scene graph represents explicitly the relationship between objects
- render by traversing the graph
- state attributes/matrices are restored for each branch in graph (Push/Pop)

Object-Oriented Graphics API
- layer on top of OpenGL or other graphics API
- represent scene with a ‘scene-graph’
- render the scene graph by tree traveral using OpenGL
- SGI Open Inventor/VRML/ DirectX/Java-3D
- OpenSceneGraph, OpenSG

Animation

Articulated Model - Kinematic chain of Rigid Parts
- Control by a small set of parameters (joint angles)

Forward Kinematics .)
-givea sei of joint angle parameters ¢ .}\. 9@
x, = f(9)

= M(6,)M(6,)M (6,)M (6,)x %

Forward kinematic model propagates joint angles
information to evaluate the transformation of the
end-effector
- single solution for a given set of angles
- no dynamics (forces, mass, inertia)

Widely used to control characters
- joint angles generated manually from key-frames
interpolation used to fill in intermediate frames
- captured from markers on a real-subject

Avatartool

Inverse Kinematics
Given a desired end-effector position x,
what combination of joint angles will produce this position

R
¢ - f (xe)
Used for interactive character positioning
ie moving end-effector changes arm joint angles

Problem: Multiple solutions for a given end-effector position
- in general there is no unique inverse

2-Link chain
2 solutions ./\

3-Link Chain
infinite solutions

Solution of Inverse Kinematics Problems for Animation

Consider the forward kinematics equation:

x, = f(9)
x, —ndimensional vector position of end effector

¢ —m dimensional vector of joint angles

Jacobian matrix J is the matrix of partial derivatives relating an
infinitesimal change in each of the parameters to the change in
end-effector position

x lope = J,,

Ax, = J (AP 7 7

J is an nxm matrix of partial derivatives

J., — a'xi — af;(@)
' 06, 06, i

J;; 1s the partial derivative of end effector position x; with respect to angle 6,

The Jacobian is a local linear (first-order) approximation of the
highly non-linear function fat a particular set of parameters ¢

Solution of Inverse Kinematics using the Inverse Jacobian

Jacobian provides a local linear approximation of the rate-of-change of
end-effector position x with respect to parameters ¢

Inverse Jacobian is a local approximation of the rate of change of parameters ¢
with respect to the end effector position x

Use this to interactively move the end-effector position x towards the desired
position:

xn(’w =X

current

+A(x

goal — xcurrmr)

+ Ax(’ = xairrmt
A—step length
The corresponding change in step length is given by:
6=1"(x)
Ag=J7(P)Ax,

J7'(¢) is the inverse on an nxm matrix (not square)
- requires psuedo-inverse computation

B =Gy + AP =0y +7 (B,)
Approximation is only valid locally at ¢ therefore must take small steps to solution

Example Constructing the Jacobian Matrix J for a 2-link Chain in 2D

Forward kinematic equation:

x, = f(@)

For a 2-link chain in 2 dimensions:

X
x, = [(6,.0,)=
X, - 02 12

x, =1,cos(6,)+1,cos(6,—6,)
x, =1;sin(6,) +1, sin(6, - 6,)

.- x| | lcos(6)+1,cos(6,-6,)
¢ X, 1,sin(,)+1,sin(6, - 6,)

Example Constructing the Jacobian Matrix J for a 2-link Chain in 2D

.- x| | lcos(6)+1,cos(6,-6,) 02 I,
X, l;sin(6,)+1, sin(6, - 6,)

Jacobian J relating a change in joint angle to a change in end effector position:

Ax, = J($)A¢

=25 Gin(8)— L, sin 8, - 6,)
. . . del .
Partial derivative:

ox .
;- ox, J, = 9‘ =1,sin(6, - 6,)
96, ’
' I =%=l1 c0s(6,)+1, cos(6, —6,)
1
ox,
Jy = dOM =-1,cos(6,-6,)

2

10

Example Constructing the Jacobian Matrix J for a 2-link Chain in 2D

X, l,cos(8,)+1,cos(6,—-0,) 02 /
X = = . . X, L 2
X, l;sin(6,)+1,sin(6, - 6,)
6
X
Jacobian J relating a change in joint angle to a change in end effector position:
Ax, =J(@)A$

A'xel - A91
Axe = ,A¢ =
Ax,, A6,
o Ju Jp || —hsin6 —1sin(6,-6,) [sin(6,-6,)
B T lcos, +1,cos(6,—6,) —I,cos(6, —6,)

Ax = Ax, | | —Lsin6 —1sin(6,—6,) I,sin(6,-6,) A6,
| Ax, | | I cosB, +l,cos(6,—6,) —L,cos(6,—6,) A0,

Geometric Evaluation of Partial Derivatives

Constructing Jacobians algebraically is tedious for complex kinematic chains
and trees - more direct geometric approach

Consider a general kinematic chain where each
link has a rotation 6, about a unit length axis w;

0w, representation of an

arbitrary rotation R; _
Ow,

x, = f(9)
What is the partial derivative: o
TS

o rate-of-change of i end-effector position coordinate
i with respect to change in j joint parameter 6,

11

Geometric computation of the Jacobian

Rate-of-change end-effector position wrt parameter 6,
- depends only on section of chain from joint i to the end-effector

- rigid wrt 6, (all other degrees of freedom are constant)

Equivalent to having a single rigid link
from the i" joint to the end-effector: l e

Example: 2D Rotation in the plane

Consider the single link in a plane orthogonal to the rotation axis: w., =0

Can compute partial derivative for rate-of-change in end effector position

wrt the i joint without considering intermediate joints which are rigid (constant)
x,=1,(cos@,sin 6,)
Note: [,isconstant w.r.t g,
ox,
26,

i

=1,(~sing,cos6))

12

Geometric computation of Jacobian for general 3D rotation

A general 3D rotation axis w is not orthogonal to the link axis

Vector /,, can be split into two components:

component parallelto w,

vpara = (Wi : lie)wi vorth
component orthogonal to w,

— — [
Vorin = lie _vpara - lie - (Wi ' lie)wi e

para

v, is rotated about w, by 6, degrees

v, =R(W;,6)v,,

orth _rot

Note: v, isnot changed by rotation about w,

para
Therefore:
Rl,=Rv, +Rv Vowa TV,

para orth — VY para orth _rot

Now consider the vector u orthogonal to w; and v

orth *

U=W, XV =W, X,

Rotation of v

orth

R(ex ’Wi)vorth =V

orth

in the plane orthogonal to w, is
cos(6,)+usin(6,)

13

Rotation of line/,, :
RO . W), =v .. +V

para orth _rot

=V +v

— Vpara orth

cosé, +usin6,
=W, - Lw, + (L, = (W, - [,)w,) cos 6, +(w, X[,) sin 6,
=[,cos0, +(1—cos@)(w, -1,)w,+(w,xl,)sinb,

This is the general expression for the rotation of a vector /,, about an arbitrary
3D axis w; through angle 6,

Use this expression to compute the partial derivative of the end-effector
postion with respect to the rotation of a specific joint

Note: This expression allows the Jacobian matrix to be computed directly from
geometric operations on vectors.

Geometric computation of Jacobian for a kinematic chain

Given the expression for the 3D rotation about an axis w :

R(6,, W)L, =1, cos6, +(1—-cos6,)(w; -,)w, +(w, x1,)sin b,
Can derive the rate of change in end - effector position wrt 8,

For small 8, we can make the approximation as §, ——0 cosd,——>1 sinf,——6,
This gives the approximation :
R(6,, W), =1, +6,(w;XL,)

lie = (xe _xi)

For incremental changes A6, = 6.w,
L sor =l +6,(w,xL,)
Ax,, =A6. X[,
This is known as the 'moving axis formula'
- relates an incremental change in the angle to a corresponding
change in the end - effector position

- can be used to approximate a column in the Jacobian J,

14

Geometric computation of Jacobian for a kinematic chain

Now consider the effect of all joints on the end effector
Axie = ZAxei = ZAHI Xlie
i=0 i=0
rate of change of position of the end - effector is the sum over
all intermediate frames of the cross - product of the
angular rate of change A@, with the vector from the

joint centre to the end effector

This is equivalent to the sum of the rate of changein end - effector wrt each joint

Example: of simple 2-link chain in 2D
(see previous Example of analytic computation)

L, =, cos(6,)+1,cos(6,—8,), 1 sin(6))+1,sin(6,-6,), 0)

l,, =(l,cos8(6,-6,), l,sin(6,-6,), 0) X, I -0, l,
w; =(0,0,1) %
1
X
A6, =d6,(0,0,])

AB, = d6,(0,0,1)

Ax, =AG xI,,+ A6, x1,,
=d6,(0,0,1)x/,, +d6,(0,0,))x1,,
=do,((-I,sin(6)—1,sin(, —6,), [cos(6,)+1,cos(6,-6,), 0))
+d0,(l,sin(6, —6,),~L, cos(6, - 6,),0)
Ar = {Axl } 3 {—ll sin@, —/,sin(6,—6,) 1,sin(6,—6,) }{AH]}
‘| Ax, [, cos@ +1,cos(6,—6,) —1I,cos(6,—6,) | A6,
Sanity check - this is the same as we obtained for the Jacobian by

direct differentiation

15

Interactive Animation

Inverse kinematics using the Inverse Jacobian allows interactive position of
kinematic structures

- used for character animation

- posing of character in key-frames

A =J(P)Ax,
Use an iterative solution
Bros = By A6 =+ (B,)

This solution converges to an approximation of the required end effector position
- error depends on step-size

£= HJ(@)A&—AxE

Solution requires a psuedo-inverse of the Jacobian

Problems: - Multiple Solution
- Singularities
- 111 contitioning

Problems in Inverse Kinematic Solution

(1) Multiple Solutions
The iterative solution relies on a local linear approximation of
the forward kinematic function f'and only converges to a local minima
via ‘gradient descent’
- the solution obtained is the nearest local minima
- arbitrary may violate physical constraints

(2) Singularities in the Inverse Jacobian
- Rank of matrix J is the number of independent columns of the matrix
- During iteration rank may change to <n ie 2 columns are linearly dependent
This occurs when axis of the kinematic chain align ‘gymbal-lock’
the angles become linearly dependent
- both angle parameters produce changes in
end-effector position in exactly the same direction

(3) lll-conditoning
- In the region close to a singularity the solution
may oscillate about the local minima
- add damping to error
to limit rate of change in angles € =‘

- 2 2
U@ao-ax| +aae |

16

Summary

Hierarchical data structures
- tree traversal
- recursive function calls
- use matrix stack to combine matricies
- Object-Oriented design

Animation
- Forward Kinematics: position end-effector for given angles
- Inverse Kinematics: compute angles for given end-effector
Iterative solution via inverse Jacobian
Jacobian computed geometrically for arbitrary chain
‘moving axis formula’
Used for interactive character animation

17

