Discrete Techniques in Rasterisation

Angel Chapter 9

Discrete Techniques

Operations using the 2D image buffer
- several buffers: frame, depth

Surface Mapping
- change surface appearance at the image level
- texture mapping, bump mapping.....

Composting - overlay multiple images

Transparency - simulate opacity of surface by combining
multiple layers

Antialiasing - shade pixels which contain multiple surfaces

Discrete techniques are applied at the rasterisation stage of
the graphics pipeline (ie directly to the frame-buffer)

vertices | Geometric | Rasterisation e
Processing | (frame-buffer) " Display
pixels | Pixel /
Operations

Pixel operations modify individual pixels in a buffer

Buffer 1s a discrete 2D grid of NxM pixels (picture elements)
- Pixel has k bits (byte, integer, float)
-k NxM bitplanes

Surface Mapping

Modify the surface of a geometric object at the raster level

- Geometric objects have smooth surfaces

- Requires large number of polygons to model detailed
surface 1e small bumps, texture etc.

- Add detail as part of the rendering process by modifying
appearance at the pixel level

- ‘Mapping’ surface properties changes apperances

(colour, normal, reflectance at pixel level)

Mapping techniques:
(1) Texture mapping - modify colour based on an 1mage
(2) Environment mapping - modify colour from scene reflection
(2) Bump mapping - modify surface normals (shading)
(3) Displacement mapping - modify surface geometry

Texture Mapping

Application of a colour pattern to the geometric object surface
- pattern (texture) may be defined in 1D, 2D or 3D
- modify colour of rendered surface for pixels in frame-buffer
to colour of texture (or a combination of shading + texture)

Two-Dimensional texture mapping
- map a 2D texture image T(s,t) onto surface
- Texture coordinates 0<s,t<1
- T 1s a PxQ 2D grid of textels (texture elements)
- Texture map associates points (s,t) of T with geometric
coordinates (X,y,z) of scene objects

y X,
t A
S X —>ys
z

Texture mapping of polygonal objects

Polygonal object is defined by a set of vertices v, =(x,,¥,,z,) i=1L..,N,

For each vertex we define a corresponding texture coordinate
rn=(s,t) i=L.,N,

Each polygon 1s then mapped by colour of corresponding
region in texture map

Interpolation of texture coordinates
How to fill polygon surface with texture?

Texture mapping defines the mapping from texture to object coordinates
Model transformation + projection defines mapping to screen coordinates

r(s,t) = vi(x,y,z) = u(x;y,)

To fill a polygon we require inverse mapping from screen to texture coordinates

u(x,y,) = v(x,y,z) = r(s,t)

Use interpolation from vertex coordinates to map screen coordinates to texture
coordinates. u=ou + pu,+(1—a—- pPu,
Linear interpolation v=ow, + B, +(1—a— By,
r=on+ b, +(1—-a—- B)r
0<a, f<1
Coefficients determined by interpolation method

- barycentric coordinates
- bi-linear interpolation

Texture map aliasing

Inverse mapping gives the corresponding point in texture space

to point in screen space.

Pixels cover an area in screen space.

Require mapping of area in screen space to area in texture space

- mapping based on points only can give aliasing

y

Possible assignment of pixel colour

- inverse map of pixel centre => aliasing (periodic textures)

- average texture map colour over inverse map of pixel area (blur)

Vs

due to discrete frame buffer aliasing occurs if: texture freq. > 1/2x sampling resolution

t v t

A A A

7

>

Texture Mapping Complete Objects

Normally texture image 1s applied across complete surface of object
Requires texture coordinates to be defined that wrap around surface

Define a simple intermediate 3D surface (cube, sphere, cylinder) to which
object coordinates can be mapped

Cylindrical texture map A
h - height x =rcos(27s) ¢)
r - radius .
(s,t) texture coordinates y =rsm(275) —
£= % > s ‘\/

maps (x,y,z) object coordinates to (s,t) texture coordinates on surface of a cylinder

Intermediate object

(a) (b) (©

Spherical texture map
- no 2D parameterisation of spherical surface without singularities
- distorts surface
- Mercator projection (latitude/longitude) distorts map of earth at poles

Sphere radius r 1y
X =rcos(27s)

y =rsin(27s) cos(27t)
z =rsin(27s) sin(27t)

L
.
. Ly

27rs - angle to x-axis

27t - angle from y-axis in ys plane

Texture map to a cube
t

A

Back

— | Left|Botton. Right| Top

S Front

Examples of texture mapping

Texture Mapping in OpenGL

Supports mapping of 1, 2 and 3 dimensional textures

Pipeline architecture - pixel pipeline in parallel with geometric operations
- mapped onto geometric primitives at rasterisation stage

Geometric pipeline maps 3D primitives to pixels on the display (frame-buffer)
For each pixel:
(1) perform visibility test using the z-buffer
(11) 1f visible the pixel shading is computed (from reflection model)
(111) map vertices to texture coordinates
(1v) interpolate texture value for pixel
(v) combine texture colour and shading to give final pixel colour

Implementation of Texture Mapping in OpenGL
(1) Enable texture mapping
glEnable(GL _TEXTURE 2D);

(2) Define texture (generate or load from file)
Glubyte mytexture[512][512];

(3) Specify texture to be used
glTexImage2D(GL TEXTURE 2D,level,components, width,height,border,
format, type,mytexture);
width x height array ‘mytexture’
components - number of colour components
format - texture form ie GL RGB, GL RGBA
type - type of each component
level - used for multiple resolution textures

(4) Assign texture coordinates to vertices (0,1) => (0,width) or (0,height)
glBegin(GL _TRIANGLES),
gllexCoord2f(s1,tl),
glVertex2f(x1,yl,z1),

ooooooooo

Mapping with texture coordinates
(L,1)

(o)

Given texture (a) above what are the texture coordiates used to
create each of the following?

Texture parameters in OpenGL

Wrapping (s,t) <0 or (s,t)>1
- clamp coordinates: s>1 => s=1
glTexParameter(GL_TEXTURE WRAP S,GL _CLAMP);

- wrap: s>1 =>s =s%1
glTexParameter(GL TEXTURE WRAP S,GL REPEAT);

Sampling of Texture Image
- pixel on screen is smaller or larger than texel
- specify the sampling strategy to use nearest (fast) or linear interpolation
GL NEAREST - fast takes texture value at nearest pixel centre
GL _ LINEAR - average of 4 closest pixels

magnify texture

glTexParameterf(GL_TEXTURE 2D, GL TEXTURE MAG FILTER,GL NEAREST);
minimise texture

glTexParameterf(GL_TEXTURE 2D, GL TEXTURE MIN FILTER,GL NEAREST);

MipMapping

Define texture at multiple resolution levels
- use level nearest to required pixel sampling
- Sub-sample the image by factors of 2!
- OpenGL automatically uses appropriate resolution

GLU function to build mipmaps down to I=0 1x1 image
gluBuild2DMipmaps(GL _TEXTURE 2D,
components, width, height,format,type,mytexture),

Mipmaps are automatically used if we set:
glTexParameterf(GL _TEXTURE 2D,
GL TEXTURE MIN FILTER,GL NEAREST MIPMAP NEAREST),

Texture Mapping Properties in OpenGL

Shading/Texture Integration
The colour of a pixel is determined by both shading colour and texture colour

To combine both shading and colour (default)
glTexEnv(GL TEX ENV,GL TEX ENV MODE,GL MODULATE),

To use just texture colour
glTexEnv(GL TEX ENV,GL TEX ENV MODE,GL DECAL),

Perspective Correction
By default OpenGL uses linear interpolation in screen space (orthographic)

To include non-linear depth scaling due to perspective projection use a better
interpolation scheme (if supported)
glHint(GL PERSPECTIVE CORRECTION,GL NICEST);

Environment Maps

Texture map object surface with reflection of scene
- simulates highly reflective surface (mirror the environment)
- approximate effect of ray-tracing
- generate synthetic environment map by projecting the scene onto
an object (sphere) located at the centre of an object
- apply synthetic environment map to object surface as a texture of surface
colour with reflection computed by Phong model

Object in h -
environment\
| Reflective object
“ opg%;ft ed \Ini.:ermediate
Intermediate/ J object

surface

Examples of Environment Maps

Bump Maps

Changes the apparent shape of the surface by varying the surface normals
- surface bumps result in different shading across the surface
- simulated by varying surface normals
- normals are used in shaping computation of Phong reflection model
changing the normal result in a change in surface appearance
ie a flat surface can be shaded like a sphere setting normals appropriatly

\
IREERY LAV L1/

Reflected light is proportional to angle between surface normal
and view direction
- surface shading of curved surface is simulated by surface normal

Bump Map Implementation for Parametric Surfaces

p(u,v= (x(u,v), y(u,v),z(u,v)) point on the surface defined by 2 parameters (u,v)

The surface normal is given by: n(u,v)= P, X Py
|p,xp,
[dx/du’ dx/ dv]
p,=\dyv/du| p, =|dy/dv
| dz/du_ dz/dv

Let d(u,v) be a displacement function,
the resulting displaced surface is given by: p'(u,v)= p(u,v)+d(u,v)n(u,v)

'X !
n' (i, v)= Pu1Py

» [p'.xp',
p.=p, + uv) n(u,v)+d(u,v)n,
du
. : , od od
If the displacement d is small then: 7n'(u,v)=n+ o nxp, + " nxp,
u %

Using the normal n’ (u,v) with the surface p(u,v) simulates the appearance of p’ (u,v

NS
| S e
[AN
BT
oA S
NI

!

7

/S

A A,

Bump Mapping Example

Simplified Bump Mapping
Geometry

Original

Displacement Mapping

Apply a local displacement function d(u,v) to a smooth surface p(u,v)
- d(u,v) may be a displacement image (analogous to texture)
- efficient representation of local surface detail

P, plu,y)+d (),

Base Model

Displacement map (psuedo colour) \

Displacement Mapping of Michelangelo’s David

Original Automatic Model Generation Reconstruction
>100Mb Control Model + Displacement Map <IMb

Data Courtesy of Stanford Computer Graphics Lab.

Compositing Techniques

Combination of multiple overlapping images or layers
- combine foreground/background image
ie blue-screen studio
- simulate effect of transparency

Blending or Compositing
- multiple images can be combined together

[=cd, +(1-a)l,
Alpha component ‘A’ of RGBA colour provides a blending factor & = 4

-

A

Foreground Background S
(blue A=0) Composite

Surface Transparency

Opacity of a surface is a measure of how much light passes through

Let

Transparency or translucency =(1- {¥})

W

be an opacity coefficient such that

¥]j=1 no light passes through (opaque)

¥j=0 all light passes through (transparent)

>

Can simulate multiple overlapping semi-transparent surface by blending
together their colour for each pixel:

c(r,g,b)y=0oc, +a,c, +a,c, + ...

Surface Transparency in OpenGL

1) Enable blending
glEnable(GL BLEND);

2) Setup blending coefficients for source (new object)
and destination (current content of frame-buffer)
glBlendFunc(source factor,destination_factor)
factor can be GL ONE, GL ZERO,
GL SRC ALPHA, GL ONE MINUS SRC ALPHA
GL DST ALPHA, GL ONE MINUS DST ALPHA

Note: resulting image depends on order in which polygons are blended
must control order of rendering

Summary

* Discrete techniques applied to geometric primitives at rasterisation

« Mapping to change surface properties (colour, reflectance,shape)
- Texture
- Environment
- Bump
- Displacement

Texture mapping is widely used in film games to create highly realistic
appearance with few polygons

« Compositing or Blending
- Simulate transparent surfaces
- combine foreground/background images
- reduce aliasing

