
Rendering

Angel Ch. 7&9

What is Rendering?

Generation of discrete image ‘pixels’ from continuous lines and polygons
 - sampling of lines
 - filling polygons

How can we perform these operation efficiently?

 - theoretical vs. practical performance
 - hardware vs. software
 - graphics pipeline architecture

Basic algorithms for implementing a graphics API
 - OpenGL/PHIGS/Renderman

3D Model View
Transform

Sampling
frame-buffer

Projection
Normalisation
Culling/HSR

Display

Graphics Pipeline
4 major tasks:

 (1) Modelling - vertex based (points,lines,polygons)
 (2) Geometric Processing - determine which objects are visible
 (i) transform to camera coordinates
 (ii) normalise the projection view volume
 (iii) visibility culling/hidden-surface-removal/lighting calculation
 (iv) orthogonal projection (to 2D image plane)
 (3) Rasterization - conversion of 2D geometric primites to pixel values
 - discrete sampling: rasterization or scan conversion
 - write pixel values to frame-buffer
 (4) Display - take image from frame-buffer and draw on display
 - map to quality of display (no. of colours/colour transform)
 - ‘anti-aliasing’ to avoid jagged edges
 - read/write independent: dual ported frame-buffer memory

Implementation

2 Basic approaches
 image-oriented (sort-first)
 - loop over pixel rows or scan-lines
 - for each pixel which scene geometry contribute
 - eg. ray-tracing
 - limitations: search through geometry primitives
 is slow/view dependent

 object-oriented (sort-last)
 - graphics pipeline of opengl
 - project objects onto image plane and sort using visibility
 culling & hidden surface removal
 - limitations: large memory requirement
 high cost of processing objects independently
 - supported in hardware (>1million polygons/sec)
 graphics pipeline API’s such as OpenGL

Both approaches require the 4 tasks

 - (modelling/geometry processing/rendering/display)

Implementing Transforms
5 coordinate systems used in graphics pipeline:

 1. World Co-ordinates
 2. Camera or Eye Co-ordinates (ModelView)
 3. Clip Co-ordinates: Normalised Projection View Frustum (Projection)
 4. Normalised Device Co-ordinates
 5. Screen Co-ordinates

Transformation from world to clip co-ordinates are 4x4 homogenous matrices
 - 1 machine operation in hardware

Normalised devise co-ordinates are real (xyz) co-ordinates obtained from homogenous
clip co-ordinates (xyzw) by dividing by w

 - lie inside the cube centred on the origin: -1<x,y,z<1

Screen Co-ordinates perform orthographic projection and convert to units and
dimensions of the display

Clipping

Clipping determines which primitives or parts of primitives appear on the display
 - which part of primitive is inside the view volume frustum
 - primitives outside the view frustum are culled or rejected
 - primitives partly inside the view volume must be clipped

Clipping is performed with the normalised projection volume
in the clip or normalised device coordinates

Large number of algorithms proposed for clipping 2D & 3D
Consider algorithms which

 - can be applied in 2D & 3D
 - can be implemented in a graphics pipeline

 Line Clipping: Cohen-Sutherland
 Liang-Barsky

Line Clipping

2D line clipping algorithm
 - clipping performed after lines projected to 2D

For line end-points we can test if line is
 (i) inside - both ends inside AB
 (ii) outside - both ends outside GH,EF
 (iii) part-in - one or both ends outside CD,IJ

For case (iii) the line must be shortened before display to the part inside

Could compute intersection of lines with the view window

 - requires expensive floating point division computation
 to find line-line intersections

Cohen-Sutherland 1963

 - replaced fp division with fp subtraction + logical bit operations

Cohen-Sutherland Clipping
Define a 4-bit ‘outcode’ for the location of the line end-points wrt the sides of
the view window
 - extend the view window size to infinite lines
 - split 2d projection plane into 9 regions
 - each region has a unique bit code b0 b1 b2 b3

⎩
⎨
⎧ >

=
otherwise

yyif
b

0
)(1 max

0
⎩
⎨
⎧ <

=
otherwise

yyif
b

0
)(1 min

1

Cohen-Sutherland Clipping II

Case 3: o1&o2=0 (logical AND) (clip both ends)
 - end-points are both outside but on opposite faces
 - may be an intersection
 - computer intersection with one side and test if
 outcode is 0

Line Clipping
Given a line l(p1,p2) we have outcodes (o1,o2) for the endpoints
this gives 3 cases where part of the line is inside:

Case 1: o1=o2=0

 - line inside (no clipping)

Case 2: o1o2=0 or o2o1=0 - one end-point inside (clip one end)
 - non-zero outcode indicates which one or two sides of
 view window are intersected
 - perform line-line intersection
 & test intersection point for outcode 0
 - if 1st intersection point outcode not 0 test 2nd line intersection

All outcode checking is boolean

Floating point operations only required to compute line-line intersections
 - only performed in cases 2 & 3

Algorithm performs best with many line segments few of which are displayed

 - most lines lie outside and the endpoints are in the same region
 o1&o2=1

Can be extended to 3D

Cohen-Sutherland Clipping III

Liang-Barsky Clipping

Represent lines in the parametric form
 - efficient decisions about clipping without fp division

 - more efficient solution
 - Liang Barsky 1984

Parametric form for lines:

Note: parametric form is robust
 - same representation works for horizontal & vertical lines (y=ax+b is not)

21

21

21

)1()(
)1()(

10
)1())(),(()(

yyy
xxx

ppyxp

ααα
ααα

α
ααααα

+−=
+−=

≤≤
+−==

p1

p2

p()

Consider the intersection of the infinite line with the view window sides
There are 4 possible intersection with parameter values 1 2 3 4 :
 - unless line is horizontal or vertical
 - only one point can correspond to line entering or leaving

Liang-Barsky Clipping II

Consider the order of 1 2 3 4 along the line

Case (a): 0< 1 < 2 < 3 < 4 <1

 - all 4 points are inside the line end-point
 - 2 inner most (2,3) determine the clipped line segment

Case (b): 0 < 1 < 3 < 2 < 4 <1
 - all 4 points inside end-points

 - order indicates that line does not intersect view window
 (line intersects the top&bottom before intersecting either side)

Similarly for other cases of ordering intersection

Liang-Barsky Clipping III
Efficient implementation requires that we only compute intersections that
are required for clipped line segments

 - computation of the intersection requires fp division
 for the side y=ymax:

 similarly for other sides

We can instead write:

All tests required for the order of intersection can be restated interms of
& similar terms for the other sides of the view window

Thus, all clipping decisions can be made without floating point division

 - fp division only used when intersection point is required as
 a new end point of a shortened line segment inside the window

Avoids multiple intersection & shortening of line segments of Cohen-Sutherland

Other approaches to 2D line clipping do not extend readily to 3D

)(
)(

12

1max

yy
yy

−
−=α

max1max12)()(yyyyyy Δ=−=Δ=− αα

max, yy ΔΔ

Polygon Clipping
Required for: - view window clipping

 - polygon-polygon clipping for shadows/hidden-surface/anti-aliasing

Clipping of concave polygons can generate multiple clipped polygons

Clipping convex polygons gives a single convex polygon

Therefore, tesselate concave polygon before clipping

 - OpenGL GLU library includes tesselation

Assuming a concave polygon & a rectangular clipping region

 - 2d line clipping algorithms (Cohen-Sutherland, Liang-Barsky)
 can be applied for each polygon edge to determine polygon clipping

Blackbox Clipping
A line-segment clipper can be treated as a blackbox:

 input: pair of verticies (line end-points)
 output: pair of verticies for clipped line segment or nothing

Consider the 4 sides of the view-window as independent
 - subdivide the clipping into 4 blackbox clippers each clipping
 against a single line (infinite line corresponding to view window side)

Blackbox Line Clipping

Clipping against a single line is achieved by computing the intersection
for the side y=ymax

max3

12

1max
1213)(

)()(

yy
yy
yyxxxx

=
−
−−+=

Can consider the clipper as a blackbox with ymax as an input parameter

Combining multiple line clippers allows us to clip against each side
of the view volume

 - this is done at the expense of multiple floating point divisions

Example: Pipeline clipping of a polygon

The line corresponding to each side of a polygon are clipped successively to
produce the final clipped polygon:

Bounding Box
For complex polygons/meshes and other curved surface primitives we often use the
bounding box as an initial test for visibility culling

 - often pre-compute & store the bounding box for complex primitives

Bounding box is the limits of a primitive with respect to the axis of a
co-ordinate system

 - in 2D the smallest rectangle enclosing the primitive
 who’s sides are aligned with the co-ordinate system
 - in 3D the smallest parallelepiped enclosing the primitive

From the bounding box it is very simple to compute the possibility of intersection
 - test if the bounding box is inside the view window

Clipping in 3D
Clip against a volume rather than 2D planar region

 - clipping volume is a right parallelepiped
maxmin

maxmin

maxmin

zzz
yyy
xxx

≤≤
≤≤
≤≤

3D clipping performed by extending 2D algorithms to 3D
 - Cohen-Sutherland or Liang-Barsky
 - major difference in 3D is we clip lines against surfaces

Clipping in 3D II

Cohen-Sutherland in 3D
 - 6 bit outcode for each line endpoint

 - 27 possible end point locations
 - include infront/behind clip volume
 - evaluate line-plane intersections
 - algorithm the same as 2D

Liang-Barsky in 3D
 Add the parameteric expression for the z-component of the line:

 Consider the order of 6 intersection points with parameters
 - each line inside the volume has a maximum of 2 intersections
 - use same logic as in 2D case base on intersection order

21)1()(zzz ααα +−=

61...αα

Blackbox clipping
 - Add additional clipping limits for zmin, zmax

In 3 dimensions can write the equations for
a line l=(p1,p2) and plane [n,p0] as:

where n is the plane normal p0 is a point on the plane

The intersection of the line and the plane p() is given by:

proof: by definition

and from the normal constraint:

QED.

 can be computed with 6 multiplications + a division

 - or 1 division for standard view volume

Line-Surface Intersection

0))((
)1()(

0

21

=−⋅
+−=

ppn
ppp

α
ααα

)(
)(

12

10

ppn
ppn

−⋅
−⋅=α

)(
))((

||
|)(|

12

1

12

1

ppn
ppn

pp
pp

−⋅
−⋅=

−
−= ααα

)())((101 ppnppn −⋅=−⋅ α

n

n

p0

p1

p2

Clipping in 3D III

Standard view volume is a right parallelapiped
 - each line-plane intersection can be computed with single division

Normalised view volume for perspective projection transforms the geometry
to give a standard view volume

 - simple computation of clipping
 - followed by orthographic projection
 - overall projection cost is the same

Demonstrates the importance of the normalisation process

Hidden-Surface Removal

Hidden-surface removal or ‘visible-surface determination’ determines the
set of objects which are visible or obscured from a particular viewpoint

 - after transformation to normalised view-volume & clipping
 to remove objects outside the view volume frustum

Consider only objects composed of planar polygons

Two approaches: object-space or image-space

Generic Approach: consider objects pairwise gives 4 cases
 4 cases: 1. A completely obscures B - display A only
 2. B completely obscures A - diplay B only
 3. A&B don’t overlap - display A & B
 4. A&B partially overlap - calculate visible parts

Object-Space Hidden-Surface Removal

For a scene of k 3D opaque polygons each is treated as a separate object
 1. Pick one of k polygons & compare to k-1 other polygons
 (i) Test visibility
 (ii) Render visible region
 2. Recursively repeat 1. with another polygon and compare k-i others

Complexity O(k2) - only possible with few polygons

Depth Sort and Painter’s Algorithm
A common object-space algorithm for hidden-surface removal

Painter’s Algorithm

 If we have an ordered collection of polygons sorted by distance to viewer
 Back-to-front rendering:
 - paint farthest polygon completly
 - recursively paint next farthest polygon until you reach front

2 questions:

 (i) How do we sort polygons
 (ii) What to do if polygons overlap

Depth Sort order polygons by how far from viewer their maximum z-value is

Problem when z-range overlap:
- can not render complete
 polygons in order

Image-Space Hidden Surface Removal

Generic Approach:
Ray leaves center-of-projection and passes through pixel
 (i) intersect ray with planes of each of k polygons
 (ii) determine intersection closest to
 centre of projection & colour pixel

Computation is order image size (nxm) x k
Giving O(k) complexity

 - image-space approach is efficient vs. object-space
 - but results in more jagged edges (due to pixel based sampling)

Highly efficient pipeline implementation using z-buffer

Z-buffer Algorithm
•  most widely used Hidden-Surface removal algorithm
•  image-based approach
•  easy to implement in hardware as part of graphics pipeline
•  small additional cost to standard rasterisation process
•  Catmull 1975

z-buffer is an array of pixels the same size as frame-buffer
 - each pixel stores distance to the nearest polygon

 - initialize z-buffer values to maximum depth
Rasterize polygon-by-polygon:
 (i) for each pixel inside projected polygon store depth to nearest polygon
 (ii) update depth and colour only if polygon intersection is closer zpoly< zbuffer

Z-buffer Algorithm II
OpenGL uses z-buffer for hidden-surface removal
 - application must explicitly initialize the z-buffer for each new image generation

Polygon is part of a plane:

If (x1,y1,z1) and (x2,y2,z2) are two points
on the polygon we can define the plane
by the differential form:

If we move along a horizontal scan-line in the image plane y=const then we have:

This is a constant which is only computed once per polygon

 - therefore, scan-line conversion using the z-buffer gives efficient HSR

0=+++ dczbyax

)(
)(
)(

0

12

12

12

zzz
yyy
xxx

zcybxa

−=Δ
−=Δ
−=Δ

=Δ+Δ+Δ

x
a
cz Δ−=Δ

Back-face Removal

Prior to z-buffering we can apply to remove all back facing polygons
 - reduces the no. of polygons to be rendered
 - back facing polygons are generally not visible

Test for back facing polygons if angle between view direction v and normal n if:

If test is applied in normalised device coordinates need only check the sign of the
z-component of the polygon normal

0≥⋅vn

n

v

Scan-line algorithm
Rasterize polygons by scan-line

 - dominant algorithm before z-buffer
 - combines polygon conversion with hidden-surface removal
 - fundamentally different to z-buffer
 - requires a sophisticated data structure but lower memory cost than z-buf.

Consider 2 intersecting polygons

 if we rasterize the polygon scanline by scanline we can incrementally
 compute the depth (as in z-buffer algorithm)

To achieve efficient evaluation we store an ordered list of edges for each scanline

Scan line i as we traverse left-to-right:
 (i) cross edge a-b (only 1 poly. so no depth)
 (ii) cross edges c-d (only 1poly. so no depth)

Scan line j:
 (i) cross a-c (only 1 poly. no depth)
 (ii) cross c-d 2 polys so depth computation required
 (iii) cross d-b (only 1 poly.so no depth)

Scan Conversion

Scan-conversion converts continuous line or polygon representation to a
discrete set of pixel samples.
 - Conversion from geometric primitives to image pixels in the frame-buffer
 - Starting point is a line or polygon specified by a set of vertices vi = (xi,yi)
 in screen co-ordinates
 - Frame buffer is an nxm array of pixels

Rasterisation process is independent of display
 - most frame-buffers have dual ported
 memory allowing simultaneous read/write
 allowing display to be written at required rate

Digital Differential Analyser (DDA) Algorithm

DDA is the simplest scan-coversion algorithm
 - the name comes from an early electro-mechanical devices for
 digital simulation of differential equations
 - because deriviative of a line = slope m (y=mx+b)
 generation of a line segment is equivalent to numerical solution of a
 simple differential equation

For a line segment defined by 2 end-points the slope m is:

Assuming 0<m<1 (other values of m handled by symmetry)
We want to determine the pixels intersected by the line segment
For any change in x the change in y is given by:

As we move from x1 to x2 we increase x by increments of 1

m is real so round y+nm to nearest pixel & fill

x
y

xx
yym

Δ
Δ=

−
−=

12

12

xmy Δ=Δ

my =Δ

Digital Differential Analyser (DDA) Algorithm II

Problem with y+nm for m>1 separation between pixels in y direction
is greater than 1 resulting in gaps (slope greater than 45 degrees)

Solution is to reverse x and y and increment y by units of 1
 - resulting in all pixels being filled

Similar approach can be used for m<0,m<-1

1

1

=Δ

=Δ

y
m

x

Bresenham’s Algorithm

DDA is simple and easily coded but requires floating-point addition for each pixel

Bresenham 1963 derived a line-rasterisation that uses no floating-point calculation

 - standard algorithm used in hardware & software rasterisation

Assume line goes between integer endpoints (x1y1) (x2y2) and slope

 - slope condition is critical for algorithm

For a pixel along the line

Now consider the column

the line must intersect

We can reduce the decision to: d=a-b

Therefore, we have reduced the decision to a single variable d

10 ≤≤ m

),(2
1

2
1 ++ ji

2
3+= ix

),(),(2
3

2
3

2
1

2
3 ++++ jiorji

⎩
⎨
⎧

<+
>+

=
0
0

2
3
2
1

dj
dj

y

Bresenham’s Algorithm II

Bresenham showed we can make the decision without floating point operations
 (1) replace floating-point operations with fixed point
 (2) apply algorithm incrementally

(1) Replace d with

 All terms in this expression are integers

 Proof:
 substituting for a and b using

 all terms in this expression are integers QED.

)())((12 baxbaxxd −Δ=−−=

)322()1(2)(

)1(2

)(

)(

)()(

22

2
1

2
3

222
3

2
3

2
3

2
3

2
3

2
3

−−Δ+−+Δ=−Δ

−+=−

+−=

−+=
Δ
Δ−++

Δ
Δ=++=

ixyyjxbax

yjba

jyb

yja

x
x
yyi

x
yhimy

hmxy +=
x
ym

Δ
Δ= 22 mxyh −=

Bresenham’s Algorithm III
(2) Apply algorithm incrementally

 Suppose dk is the value at x=k+1/2
 What is dk+1

 2 situations:
 (i) y value was incremented at previous step
 (ii) y value was same at previous step

 - a increases by m only if y was increased at previous step
 otherwise a decreases by m-1
 - likewise for b: decreases by -m if incremented otherwise increases 1-m

 Multiplying by change in x gives possible increase:

Calculation for each pixel requires only 1 addition + sign test

Bresenham’s algorithm gives very efficient scan conversion of a line to pixels

 - standard algorithm for scan conversion of lines

⎩
⎨
⎧

Δ−Δ
>Δ

+=+ otherwisexy
dify

dd k
kk)(2

)0(2
1

Scan Conversion of Polygons
Scan-line algorithm

 - Scan along horizontal lines in frame-buffer
 - Rasterise polygon edges using Bresenham line scan algorithm
 - convex polygons only

Edge crossing with scan lines Scan-lines to be rasterised

Fill sections along scan lines 1-2, 3-4 ,5-6......

Pipeline process for filling polygons.

Aliasing

Rasterisation results in jagged lines/polgyons
 - spatial aliasing (a,c)
 - antialiasing: smooth edges of line to remove step change

 - approximating a continuous line by discrete approximation
 Nyquist Sampling Theorem: to represent a continuous
 function must sample at twice the highest frequency
 - For a grid sampling frequency is 1/(grid spacing)
 Nyquist frequency is 1/(2 x grid spacing)

Summary

•  Steps in implementing a renderer
- conversion from continous coordinates to discrete raster

•  Clipping
 Cohen-Sutherland - binary outcodes
 Liang-Barsky - line intersection order
 Polygon Clipping - pipeline operations
 Bounding boxes

•  Scan Conversion

 Bresenham’s Algorithm - lines
 Scan Line Algorithms
 Aliasing

