
Rendering 
 
 
 

Angel Ch. 7&9 



What is Rendering? 

Generation of discrete image ‘pixels’ from continuous lines and polygons 
 - sampling of lines 
 - filling polygons 

 
 
 
 
 
 
How can we perform these operation efficiently? 

 - theoretical vs. practical performance 
 - hardware vs. software 
 - graphics pipeline architecture 
   

Basic algorithms for implementing a graphics API 
 - OpenGL/PHIGS/Renderman  

3D Model View 
Transform 

Sampling 
frame-buffer 

Projection 
Normalisation 
Culling/HSR 

Display 



Graphics Pipeline 
4 major tasks: 

 (1) Modelling  - vertex based  (points,lines,polygons) 
 (2) Geometric Processing - determine which objects are visible 
  (i) transform to camera coordinates 
  (ii) normalise the projection view volume 
  (iii) visibility culling/hidden-surface-removal/lighting calculation 
  (iv) orthogonal projection (to 2D image plane) 
 (3) Rasterization - conversion of 2D geometric primites to pixel values 
               - discrete sampling: rasterization or scan conversion 
               - write pixel values to frame-buffer 
 (4) Display - take image from frame-buffer and draw on display 
       - map to quality of display (no. of colours/colour transform) 
       - ‘anti-aliasing’ to avoid jagged edges 
       - read/write independent: dual ported frame-buffer memory  



Implementation 

2 Basic approaches 
 image-oriented (sort-first)  
  - loop over pixel rows or scan-lines 
  - for each pixel which scene geometry contribute  
  - eg. ray-tracing 
  - limitations: search through geometry primitives  
           is slow/view dependent 

 
 object-oriented (sort-last) 
  - graphics pipeline of opengl 
  - project objects onto image plane and sort using visibility 
    culling & hidden surface removal 
  - limitations: large memory requirement 
          high cost of processing objects independently 
  - supported in hardware (>1million polygons/sec) 
    graphics pipeline API’s such as OpenGL 

 
Both approaches require the 4 tasks  

 - (modelling/geometry processing/rendering/display) 



Implementing Transforms 
5 coordinate  systems used in graphics pipeline: 

 1. World Co-ordinates 
 2. Camera or Eye Co-ordinates (ModelView) 
 3. Clip Co-ordinates: Normalised Projection View Frustum (Projection) 
 4. Normalised Device Co-ordinates 
 5. Screen Co-ordinates 

Transformation from world to clip co-ordinates are 4x4 homogenous matrices 
 - 1 machine operation in hardware 

 
Normalised devise co-ordinates are real (xyz) co-ordinates obtained from homogenous 
clip co-ordinates (xyzw) by dividing by w 

 - lie inside the cube centred on the origin: -1<x,y,z<1 
 
Screen Co-ordinates perform orthographic projection and convert to units and 
dimensions of the display  



Clipping 

Clipping determines which primitives or parts of primitives appear on the display 
 - which part of primitive is inside the view volume frustum 
 - primitives outside the view frustum are culled or rejected 
 - primitives partly inside the view volume must be clipped  

 
Clipping is performed with the normalised projection volume  
in the clip or normalised device coordinates 
 
Large number of algorithms proposed for clipping 2D & 3D 
Consider algorithms which  

 - can be applied in 2D & 3D  
 - can be implemented in a graphics pipeline 

  
 Line Clipping: Cohen-Sutherland 
             Liang-Barsky 



Line Clipping 

2D line clipping algorithm 
 - clipping performed after lines projected to 2D  

 
For line end-points we can test if line is  
    (i) inside - both ends inside AB 
    (ii) outside - both ends outside GH,EF 
    (iii) part-in - one or both ends outside CD,IJ 
 
For case (iii) the line must be shortened before display to the part inside 
 
Could compute intersection of lines with the view window 

 - requires expensive floating point division computation  
    to find line-line intersections 

 
Cohen-Sutherland 1963  

 - replaced fp division with fp subtraction + logical bit operations 



Cohen-Sutherland Clipping 
Define a 4-bit ‘outcode’ for the location of the line end-points wrt the sides of  
the view window  
    - extend the view window size to infinite lines 
    - split 2d projection plane into 9 regions 
    - each region has a unique bit code b0 b1 b2 b3  
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Cohen-Sutherland Clipping II 

Case 3: o1&o2=0  (logical AND) (clip both ends) 
 - end-points are both outside but on opposite faces 
 - may be an intersection  
 - computer intersection with one side and test if  
   outcode is 0 

Line Clipping 
Given a line l(p1,p2)  we have outcodes (o1,o2) for the endpoints 
this gives 3 cases where part of the line is inside: 

  
Case 1: o1=o2=0      

 - line inside (no clipping)     

Case 2: o1o2=0  or  o2o1=0  - one end-point inside (clip one end) 
        - non-zero outcode indicates which one or two sides of  
           view window  are intersected 
        - perform line-line intersection  
          & test intersection point for outcode 0 
       - if 1st intersection point outcode not 0 test 2nd line intersection 



All outcode checking is boolean  
  

Floating point operations only required to compute line-line intersections 
 - only performed in cases 2 & 3  

 
Algorithm performs best with many line segments few of which are displayed 

 - most lines lie outside and the endpoints are in the same region 
  o1&o2=1 

 
Can be extended to 3D  

  

Cohen-Sutherland Clipping III 



Liang-Barsky Clipping 

Represent lines in the parametric form 
              - efficient decisions about clipping without fp division  

 - more efficient solution  
 - Liang Barsky 1984 

 
Parametric form for lines: 
 
 
 
 
 
Note: parametric form is robust  
    - same representation works for horizontal & vertical lines  (y=ax+b is not) 
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Consider the intersection of the infinite line with the view window sides 
There are 4 possible intersection  with parameter values 1 2 3 4 : 
      - unless line is horizontal or vertical 
      - only one point can correspond to line entering or leaving  



Liang-Barsky Clipping II 

Consider the order of 1 2 3 4  along the line  
 
Case (a): 0< 1 < 2 < 3 < 4 <1 

     - all 4 points are inside the line end-point 
     - 2 inner most (2,3) determine the clipped line segment  
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                   - all 4 points inside end-points 

      - order indicates that line does not intersect view window 
        (line intersects the top&bottom before intersecting either side) 

 
Similarly for other cases of ordering intersection 



Liang-Barsky Clipping III 
Efficient implementation requires that we only compute intersections that 
are required for clipped line segments 

 - computation of the intersection requires fp division 
   for the side y=ymax: 

 
 

   similarly for other sides 
 
We can instead write: 
 
All tests required for the order of intersection can be restated interms of 
& similar terms for the other sides of the view window  

  
Thus, all clipping decisions can be made without floating point division 

 - fp division only used when intersection point is required as 
   a new end point of a shortened line segment inside the window 

 
Avoids multiple intersection & shortening of line segments of  Cohen-Sutherland 
 
Other approaches to 2D line clipping do not extend readily to 3D  
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Polygon Clipping 
Required for:  - view window clipping 

          - polygon-polygon clipping for shadows/hidden-surface/anti-aliasing 
 
Clipping of concave polygons can generate multiple clipped polygons 
 
 
 
 
 
Clipping convex polygons gives a single convex polygon 
 
Therefore, tesselate concave polygon before clipping 

 - OpenGL GLU library includes tesselation  
 
Assuming a concave polygon & a rectangular clipping region 

 - 2d line clipping algorithms (Cohen-Sutherland, Liang-Barsky) 
    can be applied for each polygon edge to determine polygon clipping  



Blackbox Clipping 
A line-segment clipper can be treated as a blackbox: 

 input: pair of verticies (line end-points) 
 output: pair of verticies for clipped line segment  or  nothing 

Consider the 4 sides of the view-window as independent 
 - subdivide the clipping into 4 blackbox clippers each clipping  
   against a single line (infinite line corresponding to view window side) 



Blackbox Line Clipping 

Clipping against a single line is achieved by computing the intersection  
for the side y=ymax 
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Can consider the clipper as a blackbox with ymax as an input parameter 
 
 
 
 
 
 
 
Combining multiple line clippers allows us to clip against each side  
of the view volume 

 - this is done at the expense of multiple floating point divisions 



Example: Pipeline clipping of a polygon 

The line corresponding to each side of a polygon are clipped successively to  
produce the final clipped polygon: 



Bounding Box 
For complex polygons/meshes and other curved surface primitives we often use the  
bounding box as an initial test for visibility culling 

 - often pre-compute & store the bounding box for complex primitives  
  

Bounding box is the limits of a primitive with respect to the axis of a  
co-ordinate system 

 - in 2D the smallest rectangle enclosing the primitive 
    who’s sides are aligned with the co-ordinate system 
 - in 3D the smallest parallelepiped enclosing the primitive  

 
From the bounding box it is very simple to compute the possibility  of  intersection 
   - test if the bounding box is inside the view window 



Clipping in 3D 
Clip against a volume rather than 2D planar region 

 - clipping volume is a right parallelepiped  
maxmin
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3D clipping performed by extending 2D algorithms to 3D  
 - Cohen-Sutherland or Liang-Barsky 
 - major difference in 3D is we clip lines against surfaces  



Clipping in 3D II 

Cohen-Sutherland in 3D 
               - 6 bit outcode for each line endpoint 

 - 27 possible end point locations 
 - include infront/behind clip volume 
 - evaluate line-plane intersections  
 - algorithm the same as 2D 

Liang-Barsky in 3D  
 Add the parameteric expression for the z-component of the line: 

 
 

 Consider the order of 6 intersection points  with parameters 
  - each line inside the volume has a maximum of 2 intersections 
  - use same logic as in 2D case base on intersection order 
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Blackbox clipping 
 - Add additional clipping limits for zmin, zmax 



In 3 dimensions can write the equations for  
a line l=(p1,p2) and plane [n,p0] as: 
 
 
 
where n is the plane normal p0 is a point on the plane 
 
The intersection of the line and the plane p() is given by: 
 
 
 
proof: by definition 
 
 
and from the normal constraint: 
 
QED. 
 
 can be computed with 6 multiplications + a division 

 - or 1 division for standard view volume 

Line-Surface Intersection 
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Clipping in 3D III 

Standard view volume is a right parallelapiped  
 - each line-plane intersection can be computed with single division 

 
Normalised view volume for perspective projection transforms the geometry 
to give a standard view volume 

 - simple computation of clipping  
 - followed by orthographic projection 
 - overall projection cost is the same 

 
Demonstrates the importance of the normalisation process 



Hidden-Surface Removal 

Hidden-surface removal or ‘visible-surface determination’ determines the 
set of objects which are visible or obscured  from a particular viewpoint 

 - after transformation to normalised view-volume & clipping 
    to remove objects outside the view volume frustum 

 
Consider only objects composed of planar polygons 
 
Two approaches: object-space  or image-space 
 
 



Generic Approach:  consider objects pairwise gives 4 cases 
 4 cases:  1. A completely obscures B - display A only 
     2. B completely obscures A - diplay B only 
   3. A&B don’t overlap - display A & B 
   4. A&B partially overlap  - calculate visible parts 

Object-Space Hidden-Surface Removal 

For a scene of k 3D opaque polygons each is treated as a separate object 
 1. Pick one of k polygons & compare to k-1 other polygons 
  (i) Test visibility 
  (ii) Render visible region 
 2. Recursively repeat 1. with another polygon and compare k-i others 

 
Complexity O(k2)  - only possible with few polygons 



Depth Sort and Painter’s Algorithm 
A common object-space algorithm for hidden-surface removal 
 
Painter’s Algorithm 

 If we have an ordered collection of polygons sorted by distance to viewer 
 Back-to-front rendering: 
   - paint farthest polygon completly 
               - recursively paint next farthest polygon until you reach front 

 
2 questions: 

 (i) How do we sort polygons  
 (ii) What to do if polygons overlap 

   
Depth Sort order polygons by how far from viewer their maximum z-value is  
 
Problem when z-range overlap: 
- can not render complete  
   polygons in order  



Image-Space Hidden Surface Removal 

Generic Approach: 
Ray leaves center-of-projection and passes through pixel 
  (i) intersect ray with planes of each of k polygons 
  (ii) determine intersection closest to  
        centre of projection & colour pixel 
 
 
 
 
 
 
 
 
Computation is order image size (nxm) x k 
Giving O(k) complexity  

 - image-space approach is efficient vs. object-space 
 - but results in more jagged edges (due to pixel based sampling) 

 
Highly efficient pipeline implementation using z-buffer 



Z-buffer Algorithm 
•  most widely used Hidden-Surface removal algorithm 
•  image-based approach 
•  easy to implement in hardware as part of graphics pipeline 
•  small additional cost to standard rasterisation process 
•  Catmull 1975 

z-buffer is an array of pixels the same size as frame-buffer 
 - each pixel stores distance to the nearest polygon 

               - initialize z-buffer values to maximum depth   
Rasterize polygon-by-polygon: 
    (i) for each pixel inside projected polygon store depth to nearest polygon 
    (ii) update depth and colour only if polygon intersection is closer zpoly< zbuffer 



Z-buffer Algorithm II 
OpenGL uses z-buffer for hidden-surface removal 
   - application must explicitly initialize the z-buffer for each new image generation 
 
Polygon is part of a plane: 
 
 
If (x1,y1,z1) and (x2,y2,z2) are two points 
on the polygon we can define the plane 
by the differential form: 
 
 
 
 
 
If we move along a horizontal scan-line in the image plane y=const  then we have: 
 
 
 
This is a constant which is only computed once per polygon 

 - therefore, scan-line conversion using the z-buffer gives efficient HSR 
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Back-face Removal 

Prior to z-buffering we can apply to remove all back facing polygons  
 - reduces the no. of polygons to be rendered 
 - back facing polygons are generally not visible 

 
Test for back facing polygons if angle between view direction v and normal n if: 
 
 
If test is applied in normalised device coordinates need only check the sign of the  
z-component of the polygon normal 
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Scan-line algorithm 
Rasterize polygons by scan-line  

 - dominant algorithm before z-buffer  
 - combines polygon conversion with hidden-surface removal 
 - fundamentally different to z-buffer 
 - requires a sophisticated data structure but lower memory cost than z-buf. 

 
Consider 2 intersecting polygons 

 if we rasterize the polygon scanline by scanline we can incrementally 
 compute the depth (as in z-buffer algorithm) 
  

To achieve efficient evaluation we store an ordered list of edges for each scanline 
 
Scan line i as we traverse left-to-right: 
    (i) cross edge a-b (only 1 poly. so no depth) 
    (ii)  cross edges c-d (only 1poly. so no depth) 
 
Scan line j: 
    (i) cross a-c (only 1 poly. no depth) 
    (ii) cross c-d   2 polys so depth computation required 
    (iii) cross d-b (only 1 poly.so no depth) 



Scan Conversion 

Scan-conversion converts continuous line or polygon representation to a 
discrete set of pixel samples. 
    - Conversion from geometric primitives to image pixels in the frame-buffer 
    - Starting point is a line or polygon specified by a set of vertices vi = (xi,yi) 
       in screen co-ordinates  
    - Frame buffer is an nxm array of pixels  

Rasterisation process is independent of display 
    - most frame-buffers have dual ported  
      memory allowing simultaneous read/write 
      allowing display to be written at required rate 



Digital Differential Analyser (DDA) Algorithm 

DDA is the simplest scan-coversion algorithm 
 - the name comes from an early electro-mechanical devices for  
    digital simulation of differential equations 
 - because deriviative of a line = slope m  (y=mx+b) 
   generation of  a line segment is equivalent to numerical solution of a  
   simple differential equation 

 
For a line segment defined by 2 end-points the slope m is: 
 
 
Assuming 0<m<1   (other values of  m handled by symmetry) 
We want to determine the pixels intersected by the line segment 
For any change in x the change in y is given by: 
 
 
As we move from x1 to x2 we increase x by increments of 1 
 
 
m is real so round y+nm to nearest pixel & fill 
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Digital Differential Analyser (DDA) Algorithm II 

Problem with y+nm for m>1 separation between pixels in y direction 
is greater than 1 resulting in gaps (slope greater than 45 degrees) 

Solution is to reverse x and y and increment y by units of 1 
 - resulting in all pixels being filled 

 
 
 
 
 
 
 
Similar approach can be used for m<0,m<-1  
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Bresenham’s Algorithm 

DDA is simple and easily coded but requires floating-point addition for each pixel 
 
Bresenham 1963 derived a line-rasterisation that uses no floating-point calculation 

 - standard algorithm used in hardware & software rasterisation 
 
Assume line goes between integer endpoints (x1y1) (x2y2) and slope 

 - slope condition is critical for algorithm 
 
For a pixel along the line  
 
Now consider the column 
 
the line must intersect  
 
 
We can reduce the decision to: d=a-b 
 
 
 
Therefore, we have reduced the decision to a single variable d   
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Bresenham’s Algorithm II 

Bresenham showed we can make the decision without floating point operations 
 (1) replace floating-point operations with fixed point 
 (2) apply algorithm incrementally 

 
(1) Replace d with 
 
      All terms in this expression are integers 
       
      Proof: 
           substituting for a and b using 
 
 
 
 
 
 
 
           all terms in this expression are integers QED.    
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Bresenham’s Algorithm III 
(2) Apply algorithm incrementally 

  
      Suppose dk is the value at x=k+1/2 
      What is dk+1 
 

         2 situations: 
 (i) y value was incremented at previous step 
 (ii) y value was same at previous step 

 

         - a increases by m only if y was increased at previous step  
         otherwise a decreases by m-1 
      - likewise for b: decreases by -m if incremented otherwise increases 1-m 
 
      Multiplying by change in x gives possible increase:  
 
 
 
 
Calculation for each pixel requires only 1 addition + sign test 
 
Bresenham’s algorithm gives very efficient scan conversion of a line to pixels 

 - standard algorithm for scan conversion of lines 
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Scan Conversion of Polygons 
Scan-line algorithm 

 - Scan along horizontal lines in frame-buffer 
 - Rasterise polygon edges using Bresenham line scan algorithm 
 - convex polygons only 

Edge crossing with scan lines Scan-lines to be rasterised 

Fill sections along scan lines 1-2, 3-4 ,5-6...... 

Pipeline process for filling polygons. 



Aliasing 

Rasterisation results in jagged lines/polgyons 
 - spatial aliasing (a,c) 
 - antialiasing: smooth edges of line to remove step change 

 - approximating a continuous line by discrete approximation 
 Nyquist Sampling Theorem: to represent a continuous  
 function must sample at twice the highest frequency 
 - For a grid sampling frequency is 1/(grid spacing) 
         Nyquist frequency is 1/(2 x grid spacing)  



Summary 

•  Steps in implementing a renderer 
- conversion from continous coordinates to discrete raster 
 

•  Clipping 
 Cohen-Sutherland - binary outcodes  
 Liang-Barsky - line intersection order 
 Polygon Clipping - pipeline operations 
 Bounding boxes 

 
•  Scan Conversion 

      Bresenham’s Algorithm - lines 
 Scan Line Algorithms  
 Aliasing   


