
Shading 
 
 
 

Reading: Angel Ch.6 



What is “Shading”? 

So far we have built 3D models with polygons and  rendered them so 
that each polygon has a uniform colour: 

 - results in a ‘flat’ 2D appearance rather than 3D  
 - implicitly assumed that the surface is lit such that to the viewer 
    it appears uniform 
  

‘Shading’ gives the surface its 3D appearance 
 - under natural illumination surfaces give a variation in colour 
   ‘shading’ across the surface 
 - the amount of reflected light varies depends on: 

•  the angle between the surface and the viewer 
•  angle between the illumination source and surface 
•  surface material properties (colour/roughness…) 

 
    

        Shading is essential to generate realistic images of 3D scenes 



Realistic Shading 

The goal is to render scenes that appear as realistic as photographs of  
real scenes 
 
This requires simulation of the physical processes of image formation 

 - accurate modeling of physics results  in highly realistic images 
 - accurate modeling is computationally expensive (not real-time) 

              - to achieve a real-time  graphics pipeline performance we must  
   compromise between physical accuracy and computational cost 
  

To model shading requires: 
 (1) Model of light source 
 (2) Model of surface reflection 

 
Physically accurate  modelling of shading requires a global analysis of the scene 
and illumination to account for surface reflection between surfaces/shadowing/ 
transparency etc. 
 
Fast shading calculation considers only local analysis based on:  

 - material properties/surface geometry/light source position & properties   



Physics of Image Formation 

Consider the simple scene: 
  - light rays hit surface A and are scattered 
    according to the material properties 
  - some of light from A hits B 
  - some of light from B hits A 
  - observed colour is a combination of direct and  
     reflected illumination 
 
Recursive process  
       - Inter-reflection between surfaces 
         causes colour bleeding 
          ie a white surface next to a red surface appears red 
       - The observed colour is a result of multiple interactions among  
          light sources and reflective surfaces 
 
Requires global solution 
        - integrating all rays of light from all light sources 
          and surface inter-reflections based on material properties  
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Rendering Equation 

Mathematically we can model this process based on the global energy as 
an integral equation the ‘rendering equation’ 

 - integrates over all light rays in a scene 
 - compute the surface colour ‘shading’ at every point in the scene 
 - can not be solved in general (even numerically)  

 
Various approximations: 

•  Ray tracing - trace rays of light from the viewer to the scene 
- realistic rendering for shiny surfaces 

•  Radiosity - compute inter-reflection between diffuse surfaces 
    - realistic for scenes with diffuse (matt) surfaces such a rooms 
 

Both approaches require assumptions which approximate the  
surface/illumination properties 
 
Both are computationally expensive & cannot be used in a real-time  
rendering pipeline for computer generated imagery 
 
Focus on a simpler rendering approximation the ‘Phong model’ 

•  shading for real-time pipeline graphics  



Phong Model 

Local computation of surface shading based on  
 - illumination properties 
 - material properties 
 - surface shape  

 
Approach: 
              - Trace rays of light from the illumination source to the object surface 

 - Only consider a single interaction between light source & surface 
   (no inter-reflection between surfaces) 

 
Model: 

 (1) Light source 
 (2) Light-surface interaction   

Diffuse 

Mirror 



CG Image Plane Approximation 

In computer graphics we approximate the viewer by the projection plane 
     - discretize projection ‘image’ plane as a grid of ‘pixels’  

  
Problem is to compute the colour observed at each discrete pixel 
 
Consider only rays that leave the source and reach the viewer 

 - direct from source 
 - single surface reflection 

these are the rays which reach the centre-of-projection  
after passing through the clipping rectangle 
- most rays leaving the illumination source  
  do not contribute 

Diffuse 

Mirror 
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Light Sources 

Two fundamental processes 
 - self-emission (due to an internal energy source) 
 - reflection 

 
Simple light sources (only self-emission) 

 - object with a surface  
 - each point on surface  (x,y,z) emits light 
 - light emitted at a point is a function of angle        and wavelength  

 
General light source illumination function:  

 - six parameter function 
 
Total Illumination = Integral over the surface of the light source for all angles 

                    & all wavelenths 
 
 
 
prohibitively complex/expensive 
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Light Sources II 

For a distributed light source (such as a light bulb) solving the integral of  
6 parameters is difficult and computationally expensive 
 
Simplified by: 

 - approximating distributed light source as a polygonal surface 
 - approximation by a set of point sources 

can approximate a light source of arbitrary complexity at increased computation cost 
 
 
4 Basic light source types used in CG: 

 (1) Ambient - equal light in all directions  
 (2) Point source - light from a single point in all directions 
 (3) Spot light - point source with limited range of directions 
 (4) Distant source - all light rays are parallel 

 
- with this combination of lights we can approximate most physical lighting  
  conditions 
- consider modeling of each in detail 



Light Colour 

In addition to light intensity we must model the emitted light colour 
 - the amount of light emitted at different frequencies varies 

 
In practice we can approximate the colour with a 3 component (r,g,b) colour model 

 - human vision system is based on three-colour theory which says that 
    we percieve three primary colours (red,green,blue) rather than a full 
   colour distribution 

              - therefore, we can generate images with a realistic appearance using 
   a 3 colour model (most display devices ie CRT use 3 components) 
 - each component has an associated distribution over wavelength  

 
Describe the light source colour with a 3 component intensity or ‘luminance’  
function:   

      I = [Ir,Ig,Ib] 
 
The intensity of the red, green and blue components are assumed to be independent 
 
Treat each colour component independently in computing the surface ‘shading’ 
through illumination and surface reflectance 
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Ambient Illumination 

Uniform illumination in all directions 
 ie sun on a cloudy day 
 
Could model as many distributed sources 
added together  - very expensive 
 
 
 
Model by uniform illumination of  
a surface point by ‘ambient light’ 
intensity:  
  Ia = [Iar,Iag,Iab] 
 
Every point receives the same illumination Ia 
         - each surface point can reflect this differently according to material properties 

p 



Point Source 
Emits light equally in all directions 
from position p0  
 

 I(p0) = [Ir(p0), Ig(p0) Ib(p0) ] 
 
 
Intensity of illumination received at surface point p 
due to point source at p0  is given by  
inverse square law: 
 
 
 
A point source produces high-contrast scenes:  objects appear either bright 
due to direct illumination or dark due to no illumination (hard shadows) 
      - In real-scenes light sources have a  finite size and produce soft-shadows  
      - combination of ambient & point source gives soft shadows 
In practice we replace inverse square term with an approximation: 
a,b,c are constant parameters chosen 
to soften illumination 
 
for d large illumination is constant 
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Spot Lights 

Point source with a narrow range of angles through which light is emitted  
 
Limit light to a cone whose apex is at ps and direction ls and width   
 
 
 
 
 
 
A more realistic spot light has non-uniform intensity distribution across the  
cone, this can be modelled as: 
 
 
 
 
the exponent e determines the rate of  
drop off 
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Distant Light Sources 

Light rays are parallel  
 - all rays have the same direction so we don’t need to  
   recompute the direction vector (p-p0) for each surface point 
 - calculation for parallel light sources is analagous to parallel projection 

 
In homogenous coordinates for parallel projection we can represent a distance light  
source as a vector: 

  p0  = [x,y,z,0] 
rather than a point as used for a point source 
Gives more efficient computation in the graphics pipeline 



Light-Surface Interaction 
When light strikes a surface some is absorbed & some reflected 

 - light-surface interaction depends on material properties           
   (colour/roughness) 
 - is a function of wavelength 
 - shading also depends on the surface orientation relative to light 
    source & viewer 

 
Light-Surface interaction can be classified into three categories: 

 I) Specular - most of the light is reflected along a single axis at  
        the reflection angle ie shiny surface  

                      -  a mirror is a perfect specular surface   
 II) Diffuse - light is scattered in all directions ie matt surface 
      - a perfect diffuse surface scatters light equally in all  
        directions & appears the same from all directions 
 III) Translucent - Some light penetrates the surface to emerge                     
   elsewhere through refraction ie glass/water 
              - some incident light may also be reflected 

Diffuse  
Translucent  

Specular  



Light-material interaction 

3 surface types: 
(a) Specular - appear shiny 

       - light scattered in a narrow range around reflection angle 
       - mirror is perfectly specular 

(b) Diffuse - matte  
     - light scattered in all directions  
     - perfect diffuse scatters equally in all directions 

(c) Translucent - transparent surfaces (glass,water) 
            - light penetrates the surfaces is refracted and emerges from  
  from another location + partial reflection at the surface 



Phong Reflection Model 
Only consider light rays which  

 (1) Enter camera directly 
 (2) Are reflected once off an object surface and enter camera 

•  gives efficient pipeline rendering 
•  local model - evaluated independently for each surface point 
•  close enough approximation of physics to give ‘good’ renderings for 
   a variety of lighting conditions and material properties 
•  Introduced by Phong 1975 

The Phong model supports 3 types of light-surface interaction: 
 (1) Ambient 
 (2) Diffuse 
 (3) Specular 

 
For each light source we have corresponding ambient, Ia, diffuse, Id, and 
specular, Is,  intensity components 
 
Each intensity component has 3 colour components (r,g,b) which are treated  
independently   



Model uses 4 unit vectors to calculate the observed colour ‘shading’ at  
a point on the surface: 

 (1) n  - surface normal  
 (2) v - view direction from centre-of-projection 
 (3) l - light direction to a point on the light source (arbitrary point) 
 (4) r - reflection direction of a perfectly reflected ray  

 
Note: r is a function of l and n 
 
 

Phong Reflection Model II 
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Relationship between r and n,l 
 
2 constraints on r: 
   (i) angle of incidence = angle of reflection 
    n.l = n.r 
   (ii) r is in the plane defined by l and n 
  r = an + bl 
       a,b are scalars 
 
The vector s from l perpendicular to n 
is given by: 

 s = n(n.l) - l 
 
Then r is given by:  

 r = l+2s 
    = 2n(n.l) - l 

 
  
see Angel 6.4.2 for an alternative proof 
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Phong IV 

In the phong model we consider 3 intensity components for each light source 
 - Ambient Ia, Diffuse, Id and Specular Is 

For each intensity component we have 3 colours  ie Ia = [Iar, Iag,Iab] 
 - each colour/intensity component is treated independently 

 
Phong uses a local model to approximate global illumination effects: 
 

 At any point p on the surface we can compute  
 a 3x3 illumination matrix for the ith light source: 

 
   

 
 

 where Li is the matrix of illumination intensities 
 for each light source & colour  at point p 
 ie Lira is the ambient red intensity component for the ith light source 

 
Note: distance attenuation terms have not yet been included 
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Phong V 
Construct the reflection model by assuming that we can compute how much 
of the incident light is reflected at each point of interest 

 ie for red diffuse term Lird reflection is Rird  
       where the contribution to the reflected light intensity is  Iird = Rird Lird 
  

The reflection term depends on:  
 (1) material properties 
 (2) surface orientation 
 (3) light source direction 
 (4) distance of light to viewer 

 
For each point we compute a matrix of reflection coefficients: 
 
 
We compute the contribution to the reflected light intensity for each colour  
source by summing the  components for ambient, diffuse and specular: 
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Phong VI 

The total reflected light intensity is obtained by summing contributions 
over all light sources independently for each colour component and adding 
a global ambient term: 
 
 
 
Note: the computation of the total reflected light intensity is the same for 
          each colour component 
 
In vector-matrix form we have: 
 
 
 
 
where I are 3x1 vectors of intensity components and R,L are 3x3 matrices of 
illumination intensity and material reflection coefficients. 
 
Phong reflection model gives total reflected light intensity as a linear sum 
of reflected component intensities for each intensity & colour component 
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Phong VII - Ambient Reflection 

Intensity of ambient light illumination La is the same at all points on the surface 
  -some  of light is absorbed & remaining is reflected  

 - reflected ambient intensity is the same in all directions as illumination 
   is the same in all directions 

 
Proportion of light reflected is specified by the ‘ambient light coefficient’ ka: 
 
 
 
 
La can be the ambient illumination due to either individual sources or the  
global ambient illumination. 
 
Note: the surface has different ambient coefficient [kar kag kab]  
for each colour component 
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Phong VIII - Diffuse Reflection 

Scatters light in all directions  
 - surface appears the same to viewers from all directions 
 - amount of light reflected depends on material  
   & position of light relative to surface  
 - corresponds to a rough surface: a small difference in the 
   angle of incidence between rays can result in very different  
   reflection angles 

 
Perfectly diffuse surface ‘Lambertian’ surfaces 
have no preferred direction and are  modelled 
by Lambert’s law: 
 
Where    is the angle of the incident ray to the normal 
The proportion of reflected light is given by the diffuse light coefficient kd: 
 
 The resulting reflection intensity in all directions given a point source at p0 is: 
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Phong IX - Specular Reflection 

Reflect incident light along a single axis 
 - produce surface highlights 
 - specular surfaces are smooth 
 - perfect specular surface is a mirror 
 - real-specular surfaces are asymetric and 
   reflect light along a range of angles 

 
Phong proposed an approximate model 

 - approximate the specular surface as smooth 
 - computational cost slightly greater than diffuse 

 
Intensity of light that the viewer sees depends on the angle between the reflection 
axis r and the viewer  v: 
 
 
 
 
 
ks is the specular light coefficient,  e is a “shininess”coefficient  
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Phong Model 

The reflected surface intensity at a point p on the surface due to a point source 
at p0 with ambient Ia, diffuse Id and specular components is computed  
independently for each colour component as: 
 
 
 
 
Total reflection intensity is computed for each colour component (r,g,b) by 
adding the contributions over all light sources 
 
Allowing different specular, diffuse and ambient components for each light  
source enables realistic lighting with a wide variety of surface effects to be  
simulated without modeling the full global rendering equations 
 
The Phong model does not model inter-reflections between surfaces  

 - simulated by coloured ambient lights  
  

||||

)).().((
)(

1

0

2

ppd

LkvrLknlLk
cdbda

I aia
e

issiddi

−=

++
++

=



Implementation of Phong model 

The above analysis considered the Phong model in object space 
 
In practice for a pipeline rendering system the “shading” is done after the  
object is projected in the image plane space 
 
 
 
 
As the projective transformation changes the angles we ensure the  
correct angle cosines are computed by propagating vectors through the pipeline  

Model-view Projection “Shading” image vertices 
normals 



Surface Normal Computation 
The Phong model provides a general solution for shading computation 
          - in special cases (flat surface/distant objects) the computation simplified  
          - in practice we use polygonal faces to represent 3D object surfaces  
             therefore we can simplify computation for polygonal facets 

For a planar surface such as a polygon we can compute the surface normal 
from a 3 non-colinear points:  
 
 
Note: the order is important  
         convention to define polygon vertices in ccw order 
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p0 
p2 p1 

Given a polygonal mesh for normal computation we may require computation 
of the normals at the vertices rather than for the faces. 
A vertex normal can be computed by averaging the face normals around the vertex: 
 
 
 
 
where wi are weights based on the area or angle of each polygon around the vertex 
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Polygonal Shading 

Given:  (1) A set of light sources  
             (2) A viewer (location,direction,projection) 
             (3) Object material properties 
             (4) Surface normals 
 
Apply lighting and illumination models for every point on the surface 

 - in general computation for arbitrary surfaces is expensive due 
   to cost of computing surface normals 

 
Polygonal meshes can approximate arbitrary complex surface with planar 
faces giving fast normal computation 

 - for flat polygons we can significantly reduce the shading computation 
 
Consider 3 common ways of shading polygons: 

 (1) Flat 
 (2) Gouraud (or interpolative) 
 (3) Phong 



Flat Shading 

For flat shading the normal n is constant for each polygon face 
 - assuming the viewer is distant viewpoint vector v  is also constant 
 - assuming the light source is distant light vector l is also constant 

 
Given these assumption shading computation only needs to be carried out once  
per polygon 

 - each point on the polygon has the same colour 

In practice if assumptions are not valid 
flat shading gives poor results 

 - polygonal facets clearly visible 
 - human perception highlights 
    this due to ‘lateral inhibition’ 



Flat Shading II 

Lateral Inhibition 
 - human visual response to small difference in intensities 
    accentuates the difference 
 - For sequence of intensities we perceive the brightness to overshoot  

                 on one side and undershoot on other 
 - results in stripes known as ‘Mach bands’ 
 - caused by how cones in the eye connect  
   to the optic nerve 



Gouraud Shading 

Interpolates vertex colour/shading across the polygon face 
 - introduced by Gouraud 1971 ‘interpolated shading’ 

 
For a polygon: 

 (1) Compute shading colour at each vertex 
          - lighting calculation from vertex position/normals,  
            material properties, view direction and light direction 
 (2) Interpolate vertex colour to all points on polygonal face  

 
Vertex normals are defined as the average adjacent face normal (with equal weights) 
 
 
 
Colour for any point on the triangle is computed via linear interpolation 
 
 
Result is a smooth appearance  

 - without any apparent step discontinuities in the shading 
 - works well provided polygon size is small relative to view distance 
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Barycentric Coordinates 
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Flat Shaded Goraud Shaded 



Phong Shading 

Interpolate the vertex normals across the polygon 
 
(1) Interpolate along edge(p0,p1): 
 
 
 
 
(2) Interpolate along line (pe,p2): 
 
 
 
 
this allows us to compute a continuous linearly interpolated normal for any point 
inside the polygon 

 -           can be computed as part of polygon rasterisation ‘scan conversion’ 
 - produces slightly smoother rendering than Gouraud  
 - much higher computation cost than Gouraud 
 - Gouraud usually supported in graphics pipeline hardware (real-time)  
    vs. Phong usually implemented in software (off-line) 
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Global Rendering 
Phong model uses local lighting computation and no inter-reflection 

 - this is limited in realism compared to real illumination which  
    is a global process 
 - no shadows 
 - no inter-reflection 

 

To achieve highly realistic ‘film quality’ images requires a global approximation 
2 solutions proposed: 

 - Ray Tracing - highly specular surfaces ie reflective/translucent objects 
 - Radiosity - diffuse illumination ie building interiors 

Here we outline briefly these approaches 

Global  Local  



Ray-Tracing 
•  Appel 1968 
•  Extension of local light model 
 
Based on the observation that of all the rays of light leaving a source the only  
ones which contribute to the image are those which enter the camera inside the  
view frustum and pass through the centre-of-projection 
  - direct from source 

 - single surface reflection 
 + multiple surface reflections  
 + transmission (refraction) through one or more surfaces 

 
Therefore, reversing the direction of rays and tracing rays from the  

    centre-of-projection ‘cast-rays’ will consider all rays which  
    contribute to the image  

centre-of-projection 

cast-rays 



Ray-Tracing II 
Cast at least one ray per pixel 

 (i) intersects a surface or light source 
  - generate a new ‘shadow ray’ from point on surface to each 
    light source  
               - if shadow ray intersect another surface before light source  
     then point is not lit by source ‘shadowed’ 
  - if surfaces are highly specular we can compute new  
    shadow rays as ray bounces from surface-to-surface until 
    it goes off to infinity or hits a light source  
 (ii) goes off to infinity without hitting anything 
  - background colour 

 
Generation of shadow rays for specular surface is a recursive process 
 
Principal cost of ray-tracing is hidden-surface visibility calculation for  
testing intersection of shadow rays with surfaces 
 
Ray-tracing is very good at handling surfaces which both reflect and transmit 

 - for a cast ray intersecting a surface we use our reflection model 
   to compute the light reflected (specular & diffuse) and absorbed   

 



Ray-Tracing III 

‘Cast-rays’ hits surface at point p: 
 If a light source is visible (through ‘shadow-rays’) 
     (i) computer contribution from light source to illumination at p 
     (ii) cast a new ray in direction of perfect reflection 
           using reflection model for specular component 
     (iii) cast a new ray in direction of transmitted ray if surface is 
             translucent (glass/water)  

 

Ray-tracing is good for shiny/specular surfaces simulates: 
 - shadows/inter-reflection/transmission 
 - poor for diffuse reflection term ( rays cast in all directions) 

1 cast ray 

2 shadow rays 
3 cast ray 





Radiosity 

Based on numerical methods for solving heat transfer Siegel’81 
Introduced to graphics Goral’84 
 
Assuming all surfaces are diffuse we can obtain a global solution as a global 
energy balance with diffuse surface-surface interaction. 

 - Rendering equation for diffuse surface reduces to a simple equation 
   which can be solved numerically 

Once we have solved equations we can render scene using any renderer with  
flat shading from any view 

 - calculation of form-factors is O(n2) for n patches 
 - rendering is as fast as using Phong local lighting model 



Radiosity 
Solution: 

 (i) Decompose scene into small flat polygons 
           - Assume each polygon is perfectly diffuse and  
             renders in a constant shade 
 (ii) Consider patches pairwise to compute ‘form-factors’ that describe 
        how light leaving one patch can affect the other 
 (iii) Given the form factors rendering equations reduce to a set of 
        linear  equations for radiosities (‘reflectivity’ of the polygons) 

 



Example - Radiosity 



Summary 

•  Reflectance 
-  Specular/diffuse/translucent surfaces 
 

•  Lighting 
- Ambient/point/distant 
 

•  Phong reflection model 

•  Polygon Shading 
- flat/Goraud/Phong 
- Barycentric coordinates 
 

•  Global illumination methods 
- ray tracing  
- radiosity 
 


