
Viewing 
 
 
 

Reading: Angel Ch.5 



What is Viewing? 

Viewing transform projects the 3D model to a 2D image plane 

3D Objects 
(world frame) 

Model-view 
(camera frame) 

View transform 
(projection frame) 

2D image 

View transform models the camera projection  
 - pin-hole camera 
 - camera field of view  

 
Understanding projections is crucial for writing graphics applications 



Projection 

Camera modelled using geometric optics ‘pin-hole camera’ 
 - a ray of light travels in a straight line passing through the  
   camera centre-of-projection and falling on the image-plane 

Centre-of-projection 

Image plane 

Planar geometric projection - object is projected onto a plane 
•  Preserves straight lines 
•  Does not preserve angles 



Camera Projection Models 
2 Important camera projection models in computer graphics: 

 Perspective - Camera rays pass through a centre-of-projection  
          at a distance d from the image plane 
 Parallel - all light rays are projected along parallel lines onto the  
    image plane (centre-of-projection at infinity) 

 
Both can be modelled by a 4x4 projection matrix in Homogeneous coordinates 
 
Projection of a 3D point: 

 (1) Transform point from world to camera coordinates using  
      4x4 model-view matrix M in camera coordinates 
                xc = M xw  

 
 (2) Apply camera projection by 4x4 projection matrix C 
      in camera coordinates  
                xp = Cxc = CM xw  

 
 (3) Transform homogeneous (x,y,z,w) to real-coordinates (x/w,y/w,z/w)  

  



Orthographic Projection 

Special case of parallel projection 
 - image plane is orthogonal to direction of projection 

 
 - distances orthogonal to projection plane are preserved 
 - simple to compute 
 - for a camera aligned with z-axis with projection plane at zc=0  
           xp = xc 
           yp = yc 
           zp = 0  
 - in Homogeneous coordinates 

 
 
 
 
 
 
 

 - linear projection matrix (no division) 
 - can be implemented using same hardware as perspective projection 
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X 
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Examples: Orthographic Views 

Parallel projection with projection planes parallel to principal axis of object 
 - length of lines is preserved 
 - angle between lines preserved 



Example: Axonometric Views 

Projection orthogonal to the projection plane from any general view 
 - line length in image is less than or equal to true 3D length 
 - parallel lines preserved 
 - angles not preserved  



Example: Oblique Views 

Projection at an arbitrary angle to the projection plane 
     - angles in planes parallel to the projection plane are preserved 



Perspective Projection 
Models real camera image projection 

 - pin-hole camera 
 - used in graphics to achieve real- looking images 
 - object size on image decreases with distance 
 - parallel lines converge 

Projection is determined by: 
 - distance d of centre-of-projection to image plane 
 - height of image plane or field-of-view angle 
 - depth-of-field (nearest and furthest visible objects) 
  

Image plane 

d 

h 

field-of-view angle 

optical axis 



Example: Perspective views 



Simple Perspective Projection 

Assume image projection plane is orthogonal to the view direction (optical axis) 
 
Simplify the camera model by: 

 - placing the center-of-projection at the origin of the camera frame 
 - alligning the optical axis or view direction with the -z-axis 
 - place the image projection plane  frame infront of the camera 

d 
Z-axis 

Y-axis 
yc 

yp 

zc 

Projection gives: 
 
 
 
 
 
& similarly for xp 
with zp = d 
 
Non-linear equations due to division by zc 
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What is the 4x4 Homogeneous transform matrix for perspective projection? 
 
In Homogeneous coordinates  a point xc = [xc,yc,zc,1]  
 
This represents a line in space for  0 < w  from the center-of-projection (origin) 
 
For a camera at the origin aligned with the z-axis 
the simple perspective projection matrix is given by: 
 
 
 
 
 
 
 
 
 
In real-coordinates:   

  
 
 

Homogeneous Transform for Perspective Projection  
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General Perspective Projection 

We have derived the perspective projection matrix C for the simple case 
of a camera at the origin aligned with the z-axis. 
 
How can we perform perspective projection for an arbitrary camera position  
& orientation? 

 - transform the world frame into the camera frame such that 
   the center-of-projection is at the origin & view direction on the -z axis 

 
Camera frame has 6 degrees-of-freedom (dof) specified by 

 (1) position of centre-of-projection            c = [cx,cy,cz,1]          (3dof) 
 (2) image projection plane unit normal      n = [nx,ny,nz,0]         (2dof) 
       image projection plane unit up vector  v = [vx,vy,vz,0]         (1dof) 
   

Now we want to construct the transform V which moves the camera to the  
new position and orientation 
 
The transform is composed of a rotation about the origin to the correct orientation 
followed by a translation:  

                              V=TR 



Camera Positioning 

R 

T 

V 

v 

-n 

u X 

Y 

Z 

Camera Transform V=TR 
 
The camera translation is  
 
 
 
 
 
The orientation of the camera is defined by unit vectors n and v 
which are orthogonal to each other:  

  
 
This gives a matrix M which orients a vector in the (u,v,n) basis with respect to  
the world frame (X,Y,Z) basis: 
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Camera Positioning 

The rotation matrix R orients a vector in (X,Y,Z) basis with respect to  
the (u,v,n) basis: 
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Multiplying by the translation T we obtain the camera transform: 
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Therefore, we can transform points in world frame to camera frame for an  
arbitrary camera position and orientation by: 

wc Vxx =
where xc and xw are in Homogeneous co-ordinates   



 (1) Transform point from world to camera coordinates using  
      4x4 model-view matrix V in camera coordinates 
                xc = Vxw  

 
 (2) Apply camera projection by 4x4 projection matrix C 
      in camera coordinates  
                xp = Cxc = CV xw  

 
 (3) Transform Homogeneous (x,y,z,w) to real-coordinates (x/w,y/w,z/w) 
       giving:  

Projection Pipeline 
We can transform any point xw in the world frame to the perspective projection 
in any camera view using a concatenation of Homogeneous transforms:  

xw 
Model-view 
        V 

xc Projection 
       C 
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View-volume 
Projection allows us to transform points from the world frame to a projective  
camera frame but does not account for camera properties. 
  - field-of-view angle defines the view-volume  

   only objects inside the view-volume are seen by the camera 
 - view-volume is a semi-infinite pyramid with its apex  
       at the centre-of-projection 

                 Objects not within the view-volume are  
      clipped from the scene 

 
 
 

 most graphics API’s define a finite view volume by a front and back plane 
 - view frustum is a truncated pyramid   
      bounded by the view-volume and front/back planes 
   Objects not within the frustum are clipped  



Projection Normalisation 

Projection normalisation converts all projections into orthogonal projections 
    by distorting the objects such that the orthogonal  
    projection of the distorted object is the same as the  
    desired projection of the original object 

Object distortion can be described by a Homogeneous transformation matrix 
Therefore, we can implement projective normalisation by concatenating the  
distortion matrix with the projection 
 
Projective normalisation is used to transform the camera view-volume to a  
standard canonical view-volume for clipping. 



Orthographic Projection Normalisation 

Two stages: 
 (1) Transform the view-volume for an arbitrary orthographic camera 
        to a standard view volume  
 (2) Apply an orthographic projection on the transformed objects 

 
For an  orthographic camera with view direction aligned with the z-axis 
the view-volume is bounded by the parallelepiped enclosing such that:   
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The simplest clipping volume to deal with 
is a cube center at the origin such that: 
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- canonical view volume in OpenGL 

How do we transform the arbitrary view volume to the canonical? 

),,( maxminmin zyx

),,( minmaxmax zyx

X 

Y 

Z 
)1,1,1( −−

)1,1,1( −

N 



Orthographic Projection Normalisation II 

Transform from arbitrary to canonical view volume by: N=ST 
 (i) Translation of the centre of the arbitrary view volume to the origin 
      by translation   

 
 
 

 (ii) Scaling the arbitrary view volume to the canonical  
 
 
 
 
The resulting normalisation transform for orthographic projection is: 
 
 
 
 
 
 
This is a non-singular transformation which can be used to normalise points  
to the canonical volume for clipping/hidden-surface removal/shading.  
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Perspective Normalisation 

We want to find a transformation which normalises the view frustum for  
a perspective projection to the canonical view frustum 
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A simple perspective projection with the projection plane at -d on the z-axis 
can be represented as: 
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Simple Perspective Normalisation 

Setting d=-1 gives the semi-infinite view-volume  
bounded by the planes: 
 
We define a finite view frustum by:  
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Consider the transformation N which transforms point (x,y,z,1) to (x’,y’,z’,w): 
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Simple Perspective Normalisation II 

If we apply an orthographic projection to N we obtain: 
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which results in the projection: 
 
in real-coordinates this is:  
 
which is a perspective projection of the point for an image plane at z=-1 
 
Thus we have achieved a perspective projection by combining the  
matrix N with an orthographic projection. 
 
N is distorting the world space  
 
How can we use N to normalise the projective view frustum to the canonical 
view frustum? 
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Simple Perspective Normalisation III 
Matrix N is non-singular and transforms the original view-volume into a new 
view volume. 
Choose    and     such that the new volume is the canonical clipping frustum 
 
The sides of the projective view-volume after normalisation N are transformed 
to be the same as the canonical view-volume: 
 
 
The front and back are  transformed to the planes: 
 

    
 
 
 
Therefore, setting     and    we obtain the canonical view frustum: 
 
 
 
Thus, we have transformed from a simple projective to canonical view-frustum 
       - This is a non-linear mapping which preserves the depth ordering   
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General Perspective Normalisation 

In the simple perspective normalisation we assumed that the projection plane 
was at zc=-1 
We can generalise this to an arbitrary perspective projection 

 (1) Convert the view-frustum to the simple symmetric projection frustum 
 (2) Transform the simple frustum to the canonical view frustum 

 
Conversion of an arbitrary asymmetric view frustum to the simple frustum: 

 (i) Shear the frustum to obtain a symmetric frustum 
 
 
 
 
 
 

 (ii) Scale the sides of the frustum  
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We can then concatenate the transform with the transformation of the simple 
view frustum to transform an arbitrary projective frustum to the canonical view frustum 
 
 
 
 
 
This can then be orthographically projected to obtain the original perspective projection 
 
Hence, we can model any perspective projection as a transform to the canonic view 
frustum followed by an orthographic projection 
 
 
The canonic view frustrum is important for implementing visibility, shadowing  

General Perspective Normalisation II 
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Summary 

•  Two projection models: Orthographic (parallel), Perspective (pin-hole) 
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•  Any transform implemented by concatenation of transforms 
    (i) Transform model to camera coordinates ‘ModelView’ 
    (ii) Apply perspective projection 
 
•  Camera FOV transformed into canonic FOV (unit cube) for clipping 
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