
Viewing

Reading: Angel Ch.5

What is Viewing?

Viewing transform projects the 3D model to a 2D image plane

3D Objects
(world frame)

Model-view
(camera frame)

View transform
(projection frame)

2D image

View transform models the camera projection
 - pin-hole camera
 - camera field of view

Understanding projections is crucial for writing graphics applications

Projection

Camera modelled using geometric optics ‘pin-hole camera’
 - a ray of light travels in a straight line passing through the
 camera centre-of-projection and falling on the image-plane

Centre-of-projection

Image plane

Planar geometric projection - object is projected onto a plane
•  Preserves straight lines
•  Does not preserve angles

Camera Projection Models
2 Important camera projection models in computer graphics:

 Perspective - Camera rays pass through a centre-of-projection
 at a distance d from the image plane
 Parallel - all light rays are projected along parallel lines onto the
 image plane (centre-of-projection at infinity)

Both can be modelled by a 4x4 projection matrix in Homogeneous coordinates

Projection of a 3D point:

 (1) Transform point from world to camera coordinates using
 4x4 model-view matrix M in camera coordinates
 xc = M xw

 (2) Apply camera projection by 4x4 projection matrix C
 in camera coordinates
 xp = Cxc = CM xw

 (3) Transform homogeneous (x,y,z,w) to real-coordinates (x/w,y/w,z/w)

Orthographic Projection

Special case of parallel projection
 - image plane is orthogonal to direction of projection

 - distances orthogonal to projection plane are preserved
 - simple to compute
 - for a camera aligned with z-axis with projection plane at zc=0
 xp = xc
 yp = yc
 zp = 0
 - in Homogeneous coordinates

 - linear projection matrix (no division)
 - can be implemented using same hardware as perspective projection

Z
X

Y

Examples: Orthographic Views

Parallel projection with projection planes parallel to principal axis of object
 - length of lines is preserved
 - angle between lines preserved

Example: Axonometric Views

Projection orthogonal to the projection plane from any general view
 - line length in image is less than or equal to true 3D length
 - parallel lines preserved
 - angles not preserved

Example: Oblique Views

Projection at an arbitrary angle to the projection plane
 - angles in planes parallel to the projection plane are preserved

Perspective Projection
Models real camera image projection

 - pin-hole camera
 - used in graphics to achieve real- looking images
 - object size on image decreases with distance
 - parallel lines converge

Projection is determined by:
 - distance d of centre-of-projection to image plane
 - height of image plane or field-of-view angle
 - depth-of-field (nearest and furthest visible objects)

Image plane

d

h

field-of-view angle

optical axis

Example: Perspective views

Simple Perspective Projection

Assume image projection plane is orthogonal to the view direction (optical axis)

Simplify the camera model by:

 - placing the center-of-projection at the origin of the camera frame
 - alligning the optical axis or view direction with the -z-axis
 - place the image projection plane frame infront of the camera

d
Z-axis

Y-axis
yc

yp

zc

Projection gives:

& similarly for xp
with zp = d

Non-linear equations due to division by zc

c

c
p

p

c

c

z
dyy

d
y

z
y

=

=

What is the 4x4 Homogeneous transform matrix for perspective projection?

In Homogeneous coordinates a point xc = [xc,yc,zc,1]

This represents a line in space for 0 < w from the center-of-projection (origin)

For a camera at the origin aligned with the z-axis
the simple perspective projection matrix is given by:

In real-coordinates:

Homogeneous Transform for Perspective Projection

],,,[

0100
0100
0010
0001

d
zzyxx

Cxx
d

C

c
cccp

cp

=

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

dz
z
dyy

z
dxx p

c

c
p

c

c
p === ,,

General Perspective Projection

We have derived the perspective projection matrix C for the simple case
of a camera at the origin aligned with the z-axis.

How can we perform perspective projection for an arbitrary camera position
& orientation?

 - transform the world frame into the camera frame such that
 the center-of-projection is at the origin & view direction on the -z axis

Camera frame has 6 degrees-of-freedom (dof) specified by

 (1) position of centre-of-projection c = [cx,cy,cz,1] (3dof)
 (2) image projection plane unit normal n = [nx,ny,nz,0] (2dof)
 image projection plane unit up vector v = [vx,vy,vz,0] (1dof)

Now we want to construct the transform V which moves the camera to the
new position and orientation

The transform is composed of a rotation about the origin to the correct orientation
followed by a translation:

 V=TR

Camera Positioning

R

T

V

v

-n

u X

Y

Z

Camera Transform V=TR

The camera translation is

The orientation of the camera is defined by unit vectors n and v
which are orthogonal to each other:

This gives a matrix M which orients a vector in the (u,v,n) basis with respect to
the world frame (X,Y,Z) basis:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

=

1000
100
010
001

z

y

x

c
c
c

T

vnu
vn

×=
= 0.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000
0
0
0

zzz

yyy

xxx

nvu
nvu
nvu

M

Camera Positioning

The rotation matrix R orients a vector in (X,Y,Z) basis with respect to
the (u,v,n) basis:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=== −

1000
0
0
0

1

zyx

zyx

zyx

T

nnn
vvv
uuu

MMR

Multiplying by the translation T we obtain the camera transform:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

==

1000
zzyx

yzyx

xzyx

cnnn
cvvv
cuuu

TRV

Therefore, we can transform points in world frame to camera frame for an
arbitrary camera position and orientation by:

wc Vxx =
where xc and xw are in Homogeneous co-ordinates

 (1) Transform point from world to camera coordinates using
 4x4 model-view matrix V in camera coordinates
 xc = Vxw

 (2) Apply camera projection by 4x4 projection matrix C
 in camera coordinates
 xp = Cxc = CV xw

 (3) Transform Homogeneous (x,y,z,w) to real-coordinates (x/w,y/w,z/w)
 giving:

Projection Pipeline
We can transform any point xw in the world frame to the perspective projection
in any camera view using a concatenation of Homogeneous transforms:

xw
Model-view
 V

xc Projection
 C

Perspective
 Division

xp

dz
z
dyy

z
dxx p

c

c
p

c

c
p === ,,

Image
Frame

View-volume
Projection allows us to transform points from the world frame to a projective
camera frame but does not account for camera properties.
 - field-of-view angle defines the view-volume

 only objects inside the view-volume are seen by the camera
 - view-volume is a semi-infinite pyramid with its apex
 at the centre-of-projection

 Objects not within the view-volume are
 clipped from the scene

 most graphics API’s define a finite view volume by a front and back plane
 - view frustum is a truncated pyramid
 bounded by the view-volume and front/back planes
 Objects not within the frustum are clipped

Projection Normalisation

Projection normalisation converts all projections into orthogonal projections
 by distorting the objects such that the orthogonal
 projection of the distorted object is the same as the
 desired projection of the original object

Object distortion can be described by a Homogeneous transformation matrix
Therefore, we can implement projective normalisation by concatenating the
distortion matrix with the projection

Projective normalisation is used to transform the camera view-volume to a
standard canonical view-volume for clipping.

Orthographic Projection Normalisation

Two stages:
 (1) Transform the view-volume for an arbitrary orthographic camera
 to a standard view volume
 (2) Apply an orthographic projection on the transformed objects

For an orthographic camera with view direction aligned with the z-axis
the view-volume is bounded by the parallelepiped enclosing such that:

maxmin

maxmin

maxmin

zzz
yyy
xxx

≤≤
≤≤
≤≤

The simplest clipping volume to deal with
is a cube center at the origin such that:

11
11
11

≤≤−
≤≤−
≤≤−

z
y
x

- canonical view volume in OpenGL

How do we transform the arbitrary view volume to the canonical?

),,(maxminmin zyx

),,(minmaxmax zyx

X

Y

Z
)1,1,1(−−

)1,1,1(−

N

Orthographic Projection Normalisation II

Transform from arbitrary to canonical view volume by: N=ST
 (i) Translation of the centre of the arbitrary view volume to the origin
 by translation

 (ii) Scaling the arbitrary view volume to the canonical

The resulting normalisation transform for orthographic projection is:

This is a non-singular transformation which can be used to normalise points
to the canonical volume for clipping/hidden-surface removal/shading.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+−
+−
+−

=

1000
2/)(100
2/)(010
2/)(001

minmax

minmax

minmax

zz
yy
xx

T

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−

=

1000
0)/(200
00)/(20
000)/(2

minmax

minmax

minmax

zz
yy

xx

S

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
+−

−

−
+−

−

−
+−

−

==

1000
)(
)(

)(
200

)(
)(0

)(
20

)(
)(00

)(
2

minmax

minmax

minmax

minmax

minmax

minmax

minmax

minmax

minmax

zz
zz

zz

yy
yy

yy

xx
xx

xx

STN

Perspective Normalisation

We want to find a transformation which normalises the view frustum for
a perspective projection to the canonical view frustum

X

Y

Z
)1,1,1(−−

)1,1,1(−

),,(maxminmin zyx

),,(minmaxmax zyx

X

Y

Z N

A simple perspective projection with the projection plane at -d on the z-axis
can be represented as:

�

C =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 d 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

xp = Cxc

Simple Perspective Normalisation

Setting d=-1 gives the semi-infinite view-volume
bounded by the planes:

We define a finite view frustum by:

cccc zyzx ±=±= ,

)1,1,1(−−−)1,1,1(−

X

Y

Z

minzz =

maxmin zzz c <<

Consider the transformation N which transforms point (x,y,z,1) to (x’,y’,z’,w):

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

=

0100
00

0010
0001

βα
N

zw
zz

yyxx

−=
+=
==

'
'

','
βα

In real co-ordinates:

)/('
/',/'

zz
zyyzxx

βα +−=
−=−=

Simple Perspective Normalisation II

If we apply an orthographic projection to N we obtain:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0100
0000
0010
0001

0100
00

0010
0001

1000
0000
0010
0001

βα
NCorth

which results in the projection:

in real-coordinates this is:

which is a perspective projection of the point for an image plane at z=-1

Thus we have achieved a perspective projection by combining the
matrix N with an orthographic projection.

N is distorting the world space

How can we use N to normalise the projective view frustum to the canonical
view frustum?

zwzyyxx −==== ',0',','

0',/',/' =−=−= zzyyzxx

Simple Perspective Normalisation III
Matrix N is non-singular and transforms the original view-volume into a new
view volume.
Choose and such that the new volume is the canonical clipping frustum

The sides of the projective view-volume after normalisation N are transformed
to be the same as the canonical view-volume:

The front and back are transformed to the planes:

Therefore, setting and we obtain the canonical view frustum:

Thus, we have transformed from a simple projective to canonical view-frustum
 - This is a non-linear mapping which preserves the depth ordering

1',1''
,

±=±=⇒=
±=±=

yxNxx
zyzx

c

cccc

�

zc = zmin ⇒ z'= − α +
β
zmin

⎛
⎝ ⎜

⎞
⎠ ⎟

zc = zmax ⇒ z'= − α +
β
zmax

⎛
⎝ ⎜

⎞
⎠ ⎟

1'
)(

2,
)(
)(

minmax

minmax

minmax

minmax ±=⇒
−

−=
−
+= z

zz
zz

zz
zz βα

�

α

�

β

�

α

�

β

General Perspective Normalisation

In the simple perspective normalisation we assumed that the projection plane
was at zc=-1
We can generalise this to an arbitrary perspective projection

 (1) Convert the view-frustum to the simple symmetric projection frustum
 (2) Transform the simple frustum to the canonical view frustum

Conversion of an arbitrary asymmetric view frustum to the simple frustum:

 (i) Shear the frustum to obtain a symmetric frustum

 (ii) Scale the sides of the frustum

minmax
min

minmax

min

minmax

min

minmax

min

minmax

minmin
minmaxminmax

,),
2

(),
2

(

2
,

2
)cot,(cot

),0,0(),
2

,
2

(

zzzz
z
yyy

z
xxx

z
yy

z
xxHH

zzyyxx

==−±=−±=⇒

⎟⎟⎠

⎞
⎜⎜⎝

⎛ ++=

⇒++

φθ

zyzx
yy

z
xx

zS

±=±=⇒

⎟⎟⎠

⎞
⎜⎜⎝

⎛
−−

,

1,2,2

minmax

min

minmax

min

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+

=

1000
0100

0
2

)(10

0
2

)(01

min

maxmin

min

maxmin

z
yy

z
xx

H

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

=

1000
0100

00
)(

20

000
)(

2

minmax

min

minmax

min

yy
z

xx
z

S

We can then concatenate the transform with the transformation of the simple
view frustum to transform an arbitrary projective frustum to the canonical view frustum

This can then be orthographically projected to obtain the original perspective projection

Hence, we can model any perspective projection as a transform to the canonic view
frustum followed by an orthographic projection

The canonic view frustrum is important for implementing visibility, shadowing

General Perspective Normalisation II

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−
+−

−
+

−

−
+

−

==

0100
)(

2
)(
)(00

0
)(
)(

)(
20

0
)(
)(0

)(
2

minmax

minmax

minmax

minmax

minmax

minmax

minmax

min

minmax

minmax

minmax

min

zz
zz

zz
zz
yy
yy

yy
z

xx
xx

xx
z

NSHP

Summary

•  Two projection models: Orthographic (parallel), Perspective (pin-hole)

�

C =

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

xp = Cxc],,,[

0100
0100
0010
0001

d
zzyxx

Cxx
d

C

c
cccp

cp

=

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=Orthographic Simple Perspective
camera at origin
view along z-axis

•  Any transform implemented by concatenation of transforms
 (i) Transform model to camera coordinates ‘ModelView’
 (ii) Apply perspective projection

•  Camera FOV transformed into canonic FOV (unit cube) for clipping

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−
+−

−
+

−

−
+

−

==

0100
)(

2
)(
)(00

0
)(
)(

)(
20

0
)(
)(0

)(
2

minmax

minmax

minmax

minmax

minmax

minmax

minmax

min

minmax

minmax

minmax

min

zz
zz

zz
zz
yy
yy

yy
z

xx
xx

xx
z

NSHP

