3D Geometry

Reading: Angel Ch.4 + Appendix B&C



A Review of Geometry

How to represent and transform 3D shapes?

Primitive Objects: Scalars - real-numbers
Points - location 1n space
Vectors - directed line between 2 points

Representation independent of the coordinate frame

Mathematics used in computer graphics based on ‘abstract
spaces’

- Vector space (vectors/scalars)

- Affine space (vectors/scalars + points)

- Euclidean space (vectors/scalars/points + distance)

Representation 1n a particular coordinate frame leads to



Scalars
Scalars are real numbers a,b,ce R
Two fundamental operations:

Addition: c=a+b
Multiplication: ¢ =a.b =ab

Operations are:
Associative: a+b=b+a

ab=b.a
Commutative: a+(b+c)=(a+b)+c
a.(b.c)=(ab)c
Distributive: a.(b+c)=(a.b)+(a.c)

Real numbers using addition/multiplication form a scalar field
other examples are complex numbers and rational functions



Points

Point is a location in space: P,Qe R"
- independent coordinate system (exists without it)
- no size
- specifying a coordinate system defines the relative
location of a point to the origin
- addition and multiplication of points 1s not defined

Vectors
Vector is the directed line between 2 points: v e R"
- no fixed location F=0-P
- has direction & magnitude O=7+P

- vector-vector addition 1s defined
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Vector spaces V contain scalars & vectors

Vector Spaces

Vectors have two operations:

vector-vector additions:
scalar-vector multiplication: w=av

Properties of operations:

vector addition 1s closed,

Z.ero-vector:

commutative

& associative:
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Vector Space 11

scalar-vector muliplication is distributive: a(u+v)=au+av

hence, (a+b)ii = aii + bii
- changes magnitude not direction

A vector can be expressed uniquely as a linear combination of a

set of V basis vectors (v,,v,,v,,...,Vy)
N
Vv=ay ta,v,+av,t...tayv, = Za v, =Vl]a,]

i1
i=1

V' 1s a matrix of basis vectors [a,/ is a N-vector of coefficients

N
where the basis vectors are linearly independent: v, # > b7,

i=1,i% ]
N —
Linearly independent if ) a9, =0

i=1

only when a,+a,+a,+....+a, =0



Vector Spaces 111

Change of basis
given a different basis ~ (V',,v',,V';,...,V"y )

N
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there exists an nxn matrix M such that: |[v,]' =M[v,]’
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M enables us to change between different sets of basis vectors v, V'



Change of Basis

Can use M to transform a the representation of a vector from

basis v, to basis v,

Inbasisv, w=d'[v,] andinv’, w=ad"[v'] =a" Mv]
where a =[a,, a, .... a,] 1s the coeflicient representing the vector in
basis v

a =d'"M
Therefore: |a=M"a

a=(M")"a

Using the above relationship M can be used to transform the
representation of a vector between bases



Example: Change of Basis

Transform vector v=(1,1,1) v, =(1,0,0) u, =(0,1,0)

from basis v to basis u v, =(0,1,0) u, =(-1,0,0)
v, =(0,0,1) u, =(0,0,1)
w, ] =My, |

Gives 9 simultaneous equations _ 0
9 Uy =%V VvV t v = 0=,

Uy = Vo Vi T VvV VoV = 1=,
U =YV T VY T Vv =0=795

Solving for M gives 0 -1 0 0 -1 0]
M={1 0 0|A=M")"=|1 0 0
0 0 1 0 0 1

Tranforming representation of vector v=(1,1,1) to basis u
a’ =a A

u' =v'A=(1,~-11)



Affine Spaces

Vector spaces lack geometric concept of location
1e all vectors with the same magnitude and direction
are 1dentical

Affine space adds point primitives to a vector space

One new operation P,OeR"
point-point subtraction: =0 p 0

From vector addition: (Q—P)+(P—R)=(Q—R)



Affine Spaces 11

Frames:
A frame consists of point P,and a vector basis (v,v,,V;,...,Vy)

an arbitrary vector vV =aV, +a,V, +a;V, +....+a,V,
& an arbitrary point  P=P, +by, +b,v, + by, +....+ b,V
the point and vector are represented by scalars /a,/ and [b;]
P, 1s the origin of the frame
Frames allow us to switch between changes in coordinate system
where the origin changes: object frames/camera frame

ie. object is represented in a local frame but its position is
in the camera frame



Euclidean Spaces

Affine spaces have no concept of how far points are

Euclidean space E is a vector space with a metric for distance

Define dot (inner) product:

N
—~ =~ T .
i=1

The magnitude of a vector 1s defined as:

N
IETE /zuf
i=1

- square-root of the sum of square components

The distance between two points is defined as
the magnitude of the vector between them



Dot (Inner) Product

Dot product 1s a scalar quantity:
uyv =lul|v|cosé

u.y

cos@ =

v

i || V]

|

Orthogonal projection of ¥ onto V is:

uyv . _
—=|u | cosé
|V

Orthogonal vectors: #.v =0
If 2 vectors are in the the same direction: #.v >0

Properties:
Associative U.v =v.u

Distributive (aut +bv)w=au.w+bv.w




Gram-Schmidt Orthogonalisation

Given a set of basis vectors u,.... u, create another basis v;....

which 1s orthonormal: v, ,\7], =0

find component of second basis vector orthogonal to v,
v, v, =0=u,-v,+av, v,

U, v, _
2 Ny

—_

Vo =Uy —

V-V
For subsequent basis vectors ﬁnd
k—
i=1 Vi
component of u orthogonal to all basm vectors v
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Cross (Outer) Product

Cross-product of two linearly independent
vectors produces a new orthogonal vector:

right-handed coordinate system

The cross-product in 3D space 1s defined as the vector:
W=V Xu =[(vyu; —v3u,), (vsu, —viuy), (viu, —v,u,) ]

V=,V vy) &t = (u,u,,uy)

The magnitude of the cross-product is:

| wiHvXu|Hv|ul/sinf|=24

where A is the area of the triangle defined by vectors |V,u




Parametric Lines

We can define a line by an arbitrary point P,and vector vV
by the parametric form:
P(a)

P(a)=FK +ov o
R

P() is a point on the line for any value of &

If v=P—( then: ‘Q
P(cx).~"
P()=P+o(Q-P)=cQ+(1-)P (@)
P() is an Affine sum of two points PO AP

0 < <1 is a point on the line segment between P and Q



Convexity

Definition: A convex object 1s one for which any point on
the line segment connecting any 2 points in the object
1s 1nside the object

Affine sum can be used to represent all points inside a convex object,
for an object defined by n-points:

P=aBR+ao,P,+---+0,F, :Zaipi

i=1
O0<e <1

iai =1
i=1

The set of points formed by the affine sum of
n-points is the ‘convex hull’

Convex hull 1s the smallest convex object which includes the
set of all n points



Planes

We can define a parametric form for a plane
from a set of 3-points P,Q,R which are not co-linear

S)=oP+(1-a)0=P+{-a)(Q—-P)
1s a point on the line from P to QO
I'(e, p)=pS(e)+(1- PR
=P+ f(l-a)(Q-P)+(1-[)R-P)
=P+au+bv
0<a,b<1 forall point inside the triangle (P,Q,R)
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Three-Dimensional Coordinate Systems and Frames

Have considered vectors and points abstract object without
representing them 1n a specific coordinate system

Given a basis v, v,,v; of linearly independent vectors we can
represent any vector w with respect to this basis as:

w=aV, + a,v, + a;Vvs

Representation of w with respect to this basis 1s column matrix a:

a 1 V1

= T
a=14d, w=a |v,
| 45 v,

Vector basis v, v,,v; and P, define a frame

P, 1s the origin
P=F +bv,+bv, +b,v,



Changes in Coordinate System

U, ¢
Change of basis vectors from v, v, vy to uuyuz: |y |=pf| v,
Us Vs

M 1is a 3x3 matrix

The representation of a vector a in v 1s transformed to b in u

as
a=M"b

b=(M")"a=Aa

Matrix A transforms the representation of vector in v to its
representation 1n u.

Remember a,b are representations with respect to a particular basis

Change of basis A4 leaves the origin at P,




Homogeneous Coordinates

Use a four-dimensional column matrix to represent both points

and vectors 1n 3-space.

A point 1n frame v,,v,,v; P, 1s defined in
Homogeneous coordinates as:

This gives a Homogeneous-coordinate representation: p =|q,

A vector can be written as:

wz[c1 c, G 0]

P=la, a, a, 1

Giving Homogeneous-coordinate representation: ¢c=[¢, ¢, ¢, 0]

Advantage: Points and vectors have different representation



Change of Frame in Homogeneous Coordinates

- e
Change of frame from v, v,,v;, P, to u,u,u;,0, : ul Vl
2 :M 2
) ) Uy &
i N2 Vi 0 0, F,

| T T2 Vs O

Vi Vo Vs 0

Ya Ve Ve 1]

For a point/vector with represent a in v,,v,,v;, P, we can transform
to 1ts representation b in frame u,u,,u;,Q,

a=M"b
This transforms both the basis and the origin of the frame



Advantage of Homogeneous Coordinates

1. Common/distinct representation of points and vectors

2. Transformation between frames by 4x4 matrix
(change of basis and origin)

3. All affine (linear) transformations can be represented by
a single matrix multiplication in Homogeneous coordinates

(Rotation, Translation, Shear, Projection)

4. Successive transformations given by concatenation of multiple
transformation matricies T=ABC

5. Computationally efficient - multiplication/addition operations

Used to represent all transformations in OpenGL



Conversion of Homogeneous to Euclidean coordinates

Homogeneous representation (x,y,z,w)
1s equivalent to (x/w,y/w,z/w) 1n 3-space

Warning: w=0 1ie vector 1s a equivalent to a point at infinity



Affine Transformations

Transformation: takes a point (or vector) and maps it to another
point (or vector)

Q=T(P)
v=R(u)

In Homogeneous coordinates we can use the same function
for points or vectors  p= f(q)

u=f(v)

() 1s a single-valued function representing a general mapping

Linear or Affine Transformations:

for all scalars o,f3 f(op+ pg)= f(op)+ ()

ie Linear transform of 2 points or vectors is the same as the
sum of the linear transforms applied to each point separately



Affine Transformation of Lines

Affine transformation of a line results in a new line

pa)=op +(1-a)p,
Ap(o) = A(op, +(1- ) p,)
=adp, +(1-a)A4p,

transformed line 1s an affine combination of the two transformed
points
1e under affine transformation straight lines are preserved.



Affine Transforms in Homogeneous Coordinates

For 4D Homogeneous coordinates all linear transforms can be
represented as a matrix multiplication:

v=Au

A 1s a 4x4 matrix
Linear transform can be viewed as
(1) a change 1n frame
or (2) transformation of points within a frame

[\S)
W

For Homogeneous coordinates A is given by:
A=

[\
W

o R R R
o R RS
o R R R

a,

K

24
a34

1

For a point p=(x,y,z, 1) the transformation has 12 degrees-of-freedom
for a vector v=(u,v,w,0) the transformation has 9 degrees of freedom




Homogeneous Affine Transformations
Translation
A I t
t (_jT 1 /q\b
I 1s a 3x3 1dentity matrix

t=(t,, t, t;) 1s a 3x1 translation vector
0'=(0,0,0) is a 3x1 zero vector

e

Equivalently in Euclidean coordinates x'=x+¢




Homogeneous Affine Transformations

Rotation
PG
I
0 1
R 1s a 3x3 rotation matrix R

0 =(000)" is a 1x3 zero vector

b X Rx
= AR =
Equivalently in Euclidean coordinates x'= Rx

Properties of Rotation matrix R
R 1s an orthonormal matrix
Columns of R are independent vectors -, =r-r,=r,-1,=0

R'=R'
RR" =1



Homogeneous Affine Transformations

Composition of Rotation+Translation

I t|R 0| |R ¢
Ap, = AT =7 —| Ar
O 110 1 (|

HRCHa T

1 1 1

Equivalently in Euclidean coordinates x'= Rx +¢

Rigid-body transform (no change in object shape/size)



Homogeneous Affine Transformations

Scale
- Non-rigid transformation

S 0
Ag=| -
0" 1

s; 0 0
S={0 s, O
0 0 s5

X' X Sx
= AS =
Equivalently in Euclidean coordinates x'=Sx
Elementary transforms: Translation, Rotation, Scale

All other linear transformations formed
by composition of elementary transforms



Concatenation of Transforms

Given a point x we want to apply a series of transforms 7,...7T,
- order of composition 1s critical

T=T---T
x'=Tx=1---T x
=T, T,.(I,x)

=1, T, ,(T,,(T,x))
The last transformation 7, 1s applied first

Example compositon of rotation and translation transforms:

— 1R — - — = —
x' X I t| R 0O|x Rx+1t
=A A" =] =, -
1 1 0" 10" 1|1 1
x X R Of 1 ¢tix R(x+1)
:ARAt = . ~ 7 =
1 of 110" 1|1 1




Inverse Rigid-body Transform

_ {Rx1+ t}



Rotation
(1) Euler Angles

3 parameters = 3 degrees of freedom
‘Gymbal lock’ when axis align dof are reduced ie 90degree rotation

R=R_(6,)R (6,)R(6,)
10 0
R.(6.)=|0 cosf. —sin0,

0 sin@, cos6, |

cosHy 0 sinHy_
Ry(Oy)z 0 1 0

—sinHy O cos Oy_

 cos 6., —sin6, 0]
R (6,)=|sin0. cos6, O
0 0 1




Rotation

(2) Axis Angle
Represent rotation by angle 6 about a unit axis w
Rotation = exponential map of w

3 degrees of freedom
Avoids gymbal lock
Singularity at 6 =0

W W’

R=exp(-W)=1+W + + :

2! 3!
0 -w, wy_
W=6 w, 0 -w,
-w, W, 0

No 3-parameter representation of rotation can avoid singularities



(3) Quarternions | |
4 parameter representation 9=49 T4t 4T q;k =(q,,v)
uses complex basis i,j,k i°=j=k’=-1

Rotation by 6 about w 0 9

q, = COS— v =wsIn —
No singularities

Simple operations:

9,749 =(Gost905,VstV5)
9.95 =(Qoudo5 —Vu V904V T 4o5Va TV XVg)

‘q‘z =q20 +V-y

Efficient composition of rotations



Summary - 3D Geometry

(1) Spaces - Vector/Affine/Euclidean
- operations on points/vectors

(2) Affine representation of points/lines
- convexity/convex hull

(3) Coordinate system and frames
- basis transformations

(4) Homogeneous Coordinates
- affine transformations rotation/translation/scale



