
3D Geometry 
 
 
 

Reading: Angel Ch.4 + Appendix B&C 



A Review of Geometry 

How to represent and transform 3D shapes? 
 
Primitive Objects: Scalars          - real-numbers 

        Points            - location in space 
        Vectors         - directed line between 2 points 

 
Representation independent of the coordinate frame 
 
Mathematics used in computer graphics based on ‘abstract 
spaces’ 

 - Vector space (vectors/scalars) 
 - Affine space (vectors/scalars + points) 
 - Euclidean space (vectors/scalars/points + distance) 

 
 
Representation in a particular coordinate frame leads to  
geometric transforms 



Scalars 
Scalars are real numbers   
 
Two fundamental operations: 

 Addition:                
 Multiplication: 

 
Operations are: 

 Associative: 
 
 

 Commutative:  
 
 

 Distributive: 
 
Real numbers using addition/multiplication form a scalar field 
other examples are complex numbers and rational functions 
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Points 

Point is a location in space:  
 - independent coordinate system (exists without it)  
 - no size 
 - specifying a coordinate system defines the relative  
   location of a point to the origin 
 - addition and multiplication of points is not defined 
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Vectors 
Vector is the directed line between 2 points:  

 - no fixed location 
 - has direction & magnitude 
 - vector-vector addition is defined 
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Vector Spaces 
Vector spaces V contain scalars & vectors  
 
Vectors have two operations: 

 vector-vector additions:   
 scalar-vector multiplication: 

 
Properties of operations: 

 vector addition is closed, 
        commutative   
      &  associative: 

 
Zero-vector: 
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Vector Space II 

scalar-vector muliplication is distributive: 
            hence, 
 - changes magnitude not direction 
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A vector can be expressed uniquely as a linear combination of a  
set of N basis vectors  

  
 
V is a matrix of basis vectors    [ai] is a N-vector of coefficients  
 
where the basis vectors are linearly independent: 
 
Linearly independent if 
 

           only when      
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Vector Spaces III 

Change of basis 
 given a different basis 

 
 
 
 
           there exists an nxn matrix M such that: 
 

  
 
 
 
M enables us to change between different sets of basis vectors       
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Can use M to transform a the representation of a vector from 
basis vi to basis v’i 
 
In basis vi             and in v’i 
 
where a = [a1, a2 …. an] is the coefficient representing the vector in 
basis v  
 
Therefore: 
 
Using the above relationship M can be used to transform the  
representation of a vector between bases     

Change of Basis 
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Example: Change of Basis 

Transform vector v=(1,1,1)  
from basis v to basis u  
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Gives 9 simultaneous equations 

Solving for M gives 
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Tranforming representation of  vector v=(1,1,1) to basis u 
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Affine Spaces 

Vector spaces lack geometric concept of location 
 ie all vectors with the same magnitude and direction  
     are identical 

 
Affine space adds point primitives to a vector space 

  
One new operation 

 point-point subtraction: 
 

 From vector addition:    
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Affine Spaces II 

Frames: 
 A frame consists of point P0 and a vector basis  
  
 an arbitrary vector  
   

          & an arbitrary point  
 
the point and vector are represented by scalars [ai] and [bi]  
 
P0 is the origin of the frame 
 
Frames allow us to switch between changes in coordinate system 
where the origin changes: object frames/camera frame 

 ie. object is represented in a local frame but its position is 
      in the camera frame 
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Euclidean Spaces 

Affine spaces have no concept of how far points are 
 
Euclidean space E is a vector space with a metric for distance 
 

 Define dot (inner) product: 
 
 

  
 The magnitude of a vector is defined as: 
   
   
  
 - square-root of the sum of square components 
  
 The distance between two points is defined as  
 the magnitude of the vector between them  
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Dot (Inner) Product 

Properties: 
       Associative 
       Distributive  wvbwuawvbua
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Gram-Schmidt Orthogonalisation 
Given a set of  basis vectors u1…. un create another basis v1…. vn  
which is orthonormal:  0. =ji vv
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Cross (Outer) Product 

Cross-product of two linearly independent  
vectors produces a new orthogonal vector: 
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The magnitude of the cross-product is: 
 
 
where A is the area of the triangle defined by vectors 
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Parametric Lines 
We can define a line by an arbitrary point P0 and vector 
by the parametric form: 
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Convexity 

Definition: A convex object is one for which any point on 
                   the line segment connecting any 2 points in the object 
                   is inside the object 

Affine sum can be used to represent all points inside a convex object, 
for an object defined by n-points: 
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The set of points formed by the affine sum of  
n-points is the ‘convex hull’ 
 
Convex hull is the smallest convex object which includes the  
set of all n points  



Planes 

We can define a parametric form for a plane  
 from a set of 3-points P,Q,R which are not co-linear 
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is a point on the line from P to Q 
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Three-Dimensional Coordinate Systems and Frames 

Have considered vectors and points abstract object without  
representing them in a specific coordinate system  
 
Given a basis v1,v2,v3 of linearly independent vectors we can  
represent any vector w with respect to this basis as: 
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Representation of w with respect to this basis is column matrix a: 
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Vector basis v1,v2,v3 and P0 define a frame 
P0 is the origin  
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Change of basis vectors from v1,v2,v3 to u1,u2,u3:  
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M is a 3x3 matrix  
 
The representation of a vector a in v is transformed to b in u 
as  
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Matrix A transforms the representation of vector in v to its  
representation in u.  
Remember a,b are representations with respect to a particular basis 
 
Change of basis A leaves the origin at P0  

Changes in Coordinate System 



Homogeneous Coordinates 

Use a four-dimensional column matrix to represent both points 
and vectors in 3-space. 
 
A point in frame v1,v2,v3,P0 is defined in  
Homogeneous coordinates as:  [ ]
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Advantage: Points and vectors have different representation 



Change of Frame in Homogeneous Coordinates 

Change of frame from v1,v2,v3,P0 to u1,u2,u3 ,Q0 :  
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For a point/vector with represent a in v1,v2,v3,P0 we can transform 
to its representation b in frame u1,u2,u3 ,Q0   
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This transforms both the basis and the origin of the frame 



Advantage of Homogeneous Coordinates 

1. Common/distinct representation of points and vectors 
 
2. Transformation between frames by 4x4 matrix 
     (change of basis and origin) 
 
3. All affine (linear) transformations can be represented by  
    a single matrix multiplication in Homogeneous coordinates 
   (Rotation, Translation, Shear, Projection) 
 
4. Successive transformations given by concatenation of multiple 
    transformation matricies T=ABC 
 
5. Computationally efficient - multiplication/addition operations 

Used to represent all transformations in OpenGL 



Conversion of Homogeneous to Euclidean coordinates 

Homogeneous representation (x,y,z,w)  
 
is equivalent to (x/w,y/w,z/w) in 3-space 
 
Warning: w=0  ie vector is a equivalent to a point at infinity 



Affine Transformations 

Transformation: takes a point (or vector) and maps it to another 
     point (or vector) 
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Affine Transformation of Lines 

Affine transformation of a line results in a new line 
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transformed line is an affine combination of the two transformed 
points  
ie under affine transformation straight lines are preserved. 



Affine Transforms in Homogeneous Coordinates 

For 4D Homogeneous coordinates all linear transforms can be  
represented as a matrix multiplication:  

Auv =

A is a 4x4 matrix 
Linear transform can be viewed as 

 (1) a change in frame 
      or  (2) transformation of points within a frame 
 
For Homogeneous coordinates A is given by:  
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For a point p=(x,y,z,1) the transformation has 12 degrees-of-freedom 
for a vector v=(u,v,w,0) the transformation has 9 degrees of freedom 



Homogeneous  Affine Transformations 

Translation 
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Homogeneous  Affine Transformations 

Rotation 
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R is a 3x3 rotation matrix 
0 =(000)T is a 1x3 zero vector 
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Equivalently in Euclidean coordinates  Rxx ='

Properties of Rotation matrix R 
 R is an orthonormal matrix  
 Columns of R are independent vectors  
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Homogeneous  Affine Transformations 

Composition of Rotation+Translation 
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Rigid-body transform (no change in object shape/size) 



Homogeneous  Affine Transformations 
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Scale 
    - Non-rigid transformation 

Elementary transforms: Translation, Rotation, Scale 
 All other linear transformations formed  
 by composition of elementary transforms 



Concatenation of Transforms 

Given a point x we want to apply a series of transforms T1…Tn 

     - order of composition is critical 
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The last transformation Tn is applied first  

Example compositon of rotation and translation transforms: 
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Inverse Rigid-body Transform 
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Rotation 
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3 parameters = 3 degrees of freedom 
‘Gymbal lock’ when axis align dof are reduced ie 90degree rotation 

(1) Euler Angles 



Rotation 

(2) Axis Angle  
   Represent rotation by angle    about  a unit axis w  
   Rotation = exponential map of w  
 
   3 degrees of freedom 
   Avoids gymbal lock  
   Singularity at    =0 

  

� 

R = exp(−W ) = I +W +
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No 3-parameter representation of rotation can avoid singularities 
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(3) Quarternions 
 4 parameter representation 
 uses complex basis i,j,k  

  
 Rotation by    about w  

 
      No singularities 
 
Simple operations: 

2
sin

2
cos
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Efficient composition of rotations 
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Summary - 3D Geometry 

(1) Spaces   - Vector/Affine/Euclidean 
         - operations on points/vectors 

 
(2) Affine representation of points/lines 

 - convexity/convex hull 
 
(3) Coordinate system and frames 

 - basis transformations 
 
(4) Homogeneous Coordinates 

 - affine transformations rotation/translation/scale 


