# **Introduction to Computer Vision & Graphics**

Reading: Angel ch.1 or Hill Ch1.

## What is Computer Graphics?

## 'Synthesis of images'



## What are Computer Vision & Graphics?

Graphics: 'Synthesis of images'



Vision: 'Analysis of images'



#### Vision is the inverse problem of Graphics

Graphics goes from a model of the world to images Vision from images of the world to models

## **Computer Graphics Applications**

2D Display

**Text** 

User Interfaces (GUI)

- web
- draw/paint programs

**Data Visualisation** 

- bar charts/graphs etc.

3D Modelling Shape

Architecture

Engineering Design CAD

3D Modelling Shape + Appearance

**VR** Simulation

Video Games

Film Animation

## **Computer Vision Applications**

2D image analysis:

text recognition industrial inspection (PCB, manufacture)

2D scene analysis from video:

number plate recognition TV sports annotation (Piero,iview) surveillance, behavior analysis object recognition

3D scene analysis from video:

human motion capture (markers) camera tracking – film production 3D scene reconstruction (objects, building, games)

Analysis, modelling and understanding of real-scenes from images

# **Computer Vision Applications in Sports**







## **Brief History of Computer Graphics**

Whirlwind Computer - MIT 1950

- CRT Display
- SAGE Air Defense mid 50's
  - Whirlwind II used light pen for interaction

#### Sketchpad - Sutherland 1963

- First interactive graphical system
- Interaction for 'select', 'point', 'draw'
- Data structures for repeating component shapes

#### Further Development driven by:

Design 60/70's - interactive drawing in 2D/3D Games/Simulation/Visulisation 70/80's - 3D display Film Animation 80/90's - Realistic special effects

- Feature length movies

#### **Current CGI State-of-the-art**

#### Low-cost PC/console graphics

- web-based 3D (web3D)
- games
- Real-time user interaction
- real-time data/process visualisation
- 'Realistic' computer generated characters and effects
  - complex physical modelling (water/fire...) ie Antz, Bugs Life
  - frame-by-frame animation of characters ie Toy Story, Shrek(Pixar/Disney)
  - photo-realistic faces ie Benjamin Button (2009), Beowulf (2007)
  - computer generated extras ie Titanic
  - integration of synthetic characters & real actors ie Star Wars Episode I









# Disney: Gemini Man



# Sony: Beowulf

#### Motion capture

- performance capture with 200 Vicon cameras
- ~200 facial markers
- CG performance of real actors







## **Current Research in Graphics**

'Photo-realistic' image synthesis

- synthesis of images which are indistiguishable from the real thing (matrix) (fiat-lux)
- real-time video rate generation

Realistic Modelling of people

- shape, apperance, movement, behaviour
- synthetic actors 'synthespians' & virtual presenters
- digital doubles

Real-time integration of live and computer generated content

This course will introduce current techniques for computer generated image production (nuts & bolts)



#### **Image Formation**

#### Real camera:

Real scene → Physics of image formation → Image



Computer graphics simulates the physics of real image formation

#### **Synthetic camera:**

Graphical model 

Synthetic physics of image formation 

Synthetic Image

## **Image Formation**

#### How are real images formed?

Ray-tracing model of image formation

- (1) Lights emit rays of light
- (2) Some rays hit objects & illuminate the surface
- (3) Some rays are reflected back off objects to the viewer

If we trace the path of all rays in the scene we can model the physical image formation process.

Ray-tracing can be used to simulate complex physical effects and generate highly realistic images

## Ray-Tracing



Ray-tracing traces the path of each light-ray in the scene

- highly realistic (physics-based)
- very high computational cost (not real-time)

## What Affects Image Formation?

**Illumination:** - location

- point/area & directional/ambient

- colour

**Objects:** - surface shape/smoothness

- surface material colour/texture

- surface reflectance (mirror/diffuse)

- surface opacity/transparency

**Viewer:** - viewpoint/direction

- focal-length/field-of-view

- sensor type (eye/CCD)

## A simplified model for image formation

Ray-tracing produces highly realistic images but is **SLOW** 

How can we produce 'realistic' images at video rate?

**Observation 1**: To the viewer a surface illuminated by a light source appears exactly the same as a surface emitting light.

**Observation 2:** Multiple light rays hitting a surface are additive - there is no such thing as negative light.

Therefore, we can model a scene as a set of objects which emit light:

- fast
- realistic (no shadows/inter-reflections)

## **Synthetic Image Generation**

Three-dimensional computer graphics



**Model** is a three-dimensional (3D) representation of the scene

**Renderer** is a synthetic-camera model which generates images from the 3D object model

**Image** is a two-dimensional digital image of the scene from a particular viewpoint

For image generation we must consider each component

## **Three-Dimensional Modelling**

An arbitrary 3D scene can be built from simple primitives: point, lines and polygons.

Point: 
$$p = (x,y,z)$$

Line: 
$$1 = (p_1, p_2)$$



## **Three-Dimensional Modelling II**

Polygons: Triangle 
$$t=(p_1,p_2,p_3)$$
  
Quadrilateral  $q=(p_1,p_2,p_3,p_4)$   
N-gon  $r=(p_1,...,p_N)$ 



- •N-gon can be exactly represented by triangulation
- •Triangles are the most common primitives in graphics
- •Complex surfaces are approximated by thousands of polygons

## **Modelling Object Shape in a Flat World**

#### In a flat world a curved object can be modelled by lines



## **Modelling Object Shape in the Real World**

Surface shape can be modelled by small flat surfaces



#### **Modelling Surface Shape**

A flat surface is defined by 3 points: 'triangle'



Triangles are joined into 'meshes' to model any object surface shape



#### Example: Animated Models for 'Walking with Dinosaurs'

#### (1) Animation Skeleton + Patch Model







(2) Combine detailed surface mesh model and animation model





#### (3) Model surface appearance (colour/reflectance)



#### (4) Illuminate the scene



## **Synthetic Camera Model**

Model the **projection** of the 3D scene onto the **image plane** 



Note: Specification of the 3D scene is independent of the specification of the viewer.

#### **Pin-hole Camera Model**

Pin-hole camera is a box with a small hole on one side.

• A single ray of light passes through the hole and is projected onto the image plane on the opposite side.



If the Z-axis is alligned with the camera **optical axis** then a point p=(x,y,z) is projected to a point  $p=(x_p,y_p,z_p)$  on the image plane:

$$x_p = -(xd)/z$$
  $y_p = -(yd)/z$   $z_p = -d$ 

where d is the distance of the image plane from the centre of projection

**Note:**  $z_p$  is constant for all  $p_p$  ie the depth of the image plane  $p_p = (x_p, y_p)$ 

#### Pin-hole Camera II

An equivalent image is formed if the image plane is placed infront of the camera at distance d:

$$x_p = (xd)/z$$
  $y_p = (yd)/z$   $z_p = d$ 



**Synthetic camera model**: Each point in the 3D model is projected onto the image plane using the pin-hole camera model



## **Synthetic Camera - Field-of-view**

The field-of-view (fov) for a pin-hole camera is determined by the height of the image plane h and the distance d from the centre of projection:

**Clipping** is performed to eliminate parts of the scene outside the fov



#### **Modelling Surface Appearance**

#### 4 main factors:

Shape Colour Shininess Lighting

#### Model appearance by:

- (1) Colouring triangles
- (2) Simulating physics of surface reflection

Synthesize object appearance for each flat surface separately



## **Image Sampling - Rasterisation**

Image projection forms a continuous scene projection in the camera image plane

Rasterisation samples the projection onto a discrete grid of 'pixels' in the image plane to generate a digital image Each pixel stores the colour of the surface which projects to that pixel.



# **Image Sampling - Digital Camera**



## **Synthetic Image Generation - Graphics Pipeline**

# 3D Model Clipping Projection Rasterisation 2D Image

Renderer - Synthetic camera model

**Clipping** - Eliminate parts of the scene outside the field of view

**Projection** - Project the 3D Scene onto the image plane

Rasterisation - Sample the projection on a discrete image grid